1. Abba, S. I., Abdulkadir, R. A., Gaya, M. S., Saleh, M. A., Esmaili, P., & Jibril, M. B. (2019). Neuro-fuzzy ensemble techniques for the prediction of turbidity in water treatment plant. In 2019 2nd International Conference of the IEEE Nigeria Computer Chapter (NigeriaComputConf) (pp. 1–6). IEEE.
2. Ahmad, A. L., Ismail, S., & Bhatia, S. (2005). Optimization of coagulation—flocculation process for palm oil mill effluent using response surface methodology. Environmental Science and Technology, 39(8), 2828–2834.
3. Al-Baidhani, J. H., & Alameedee, M. A. (2017). Optimal alum dosage prediction required to treat effluent water turbidity using artificial neural network. International Journal of Current Engineering and Technology, 7(4), 1552–1558.
4. Alsaeed, R., Alaji, B., & Ebrahim, M. (2021). Predicting turbidity and aluminum in drinking water treatment plants using hybrid network (GA-ANN) and GEP. Drinking Water Engineering and Science Discussions, 1–17.
5. Asmel, N. K., Al-Nima, R. R., Mohammed, F. I., Al Saadi, A. M., & Ganiyu, A. A. (2021). Forecasting effluent turbidity and pH in jar test using radial basis neural network. In Towards a Sustainable Water Future: Proceedings of Oman’s International Conference on Water Engineering and Management of Water Resources (pp. 361–370). ICE Publishing.