Abstract
Abstract
Climate change is projected to increase fire severity and frequency in the boreal forest, but it could also directly affect post-fire recruitment processes by impacting seed production, germination, and seedling growth and survival. We reviewed current knowledge regarding the effects of high temperatures and water deficits on post-fire recruitment processes of four major tree species (Picea mariana, Pinus banksiana, Populus tremuloides and Betula papyrifera) in order to anticipate the effects of climate change on forest recovery following fire in the boreal biome. We also produced maps of future vulnerability of post-fire recruitment by combining tree distributions in Canada with projections of temperature, moisture index and fire regime for the 2041–2070 and 2071–2100 periods. Although our review reveals that information is lacking for some regeneration stages, it highlights the response variability to climate conditions between species. The recruitment process of black spruce is likely to be the most affected by rising temperatures and water deficits, but more tolerant species are also at risk of being impacted by projected climate conditions. Our maps suggest that in eastern Canada, tree species will be vulnerable mainly to projected increases in temperature, while forests will be affected mostly by droughts in western Canada. Conifer-dominated forests are at risk of becoming less productive than they currently are, and eventually, timber supplies from deciduous species-dominated forests could also decrease. Our vulnerability maps are useful for prioritizing areas where regeneration monitoring efforts and adaptive measures could be developed.
Publisher
Springer Science and Business Media LLC
Reference194 articles.
1. Abe H, Nakai T (1999) Effect of the water status within a tree on tracheid morphogenesis in Cryptomeria japonica D. Don. Trees 14:124–129.
https://doi.org/10.1007/PL00009758
2. Ackerman RF, Farrar JL (1965) The effect of light and temperature on the germination of jack pine and lodgepole pine seeds. Technical report no 5, Faculty of Forestry, University of Toronto
3. Aitken SN, Yeaman S, Holliday JA et al (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111.
https://doi.org/10.1111/j.1752-4571.2007.00013.x
4. Allen RB, Hurst JM, Portier J, Richardson SJ (2014) Elevation-dependent responses of tree mast seeding to climate change over 45 years. Ecol Evol 4:3525–3537.
https://doi.org/10.1002/ece3.1210
5. Anderegg WRL, Berry JA, Smith DD et al (2012) The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proc Natl Acad Sci 109:233–237.
https://doi.org/10.1073/pnas.1107891109
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献