Rotations with Constant $$\mathbf {{\text {curl }}}$$ are Constant

Author:

Ginster JanuszORCID,Acharya Amit

Abstract

AbstractWe address a problem that extends a fundamental classical result of continuum mechanics from the time of its inception, as well as answers a fundamental question in the recent, modern nonlinear elastic theory of dislocations. Interestingly, the implication of our result in the latter case is qualitatively different from its well-established analog in the linear elastic theory of dislocations. It is a classical result that if $$u\in C^2({\mathbb {R}}^n;{\mathbb {R}}^n)$$ u C 2 ( R n ; R n ) and $$\nabla u \in SO(n)$$ u S O ( n ) , it follows that u is rigid. In this article this result is generalized to matrix fields with non-vanishing $${\text {curl }}$$ curl . It is shown that every matrix field $$R\in C^2(\varOmega ;SO(3))$$ R C 2 ( Ω ; S O ( 3 ) ) such that $${\text {curl }}R = constant$$ curl R = c o n s t a n t is necessarily constant. Moreover, it is proved in arbitrary dimensions that a measurable rotation field is as regular as its distributional $${\text {curl }}$$ curl allows. In particular, a measurable matrix field $$R: \varOmega \rightarrow SO(n)$$ R : Ω S O ( n ) , whose $${\text {curl }}$$ curl in the sense of distributions is smooth, is also smooth.

Funder

Humboldt-Universität zu Berlin

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mathematics (miscellaneous),Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3