A study of classification and feature extraction techniques for brain tumor detection
Author:
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Media Technology,Information Systems
Link
http://link.springer.com/content/pdf/10.1007/s13735-020-00199-7.pdf
Reference79 articles.
1. Narasimhamurthy A (2017) An overview of machine learning in medical image analysis. Med Imaging. https://doi.org/10.4018/978-1-5225-0571-6.ch002
2. Tyagi V (2018) Introduction to digital image processing. Underst Digit Image Process. https://doi.org/10.1201/9781315123905-1
3. Silva EA, Mendonça GV (2005) Digital image processing. In: Dorf RC (ed) The electrical engineering handbook. CRC Press, Boca Raton, pp 891–910. https://doi.org/10.1016/b978-012170960-0/50064-5
4. Gan WS (2020) Digital image processing. Signal Process Image Process Acoust Imaging. https://doi.org/10.1007/978-981-10-5550-8_10
5. Arora A (2019) Fundamental steps of digital image processing. https://medium.com/futframe-ai/fundamental-steps-of-digital-image-processing-d7518d6bb23c
Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Imaging Modalities in Brain Cancer Detection and Diagnosis;2024 4th International Conference on Emerging Smart Technologies and Applications (eSmarTA);2024-08-06
2. A deep learning model for the localization and extraction of brain tumors from MR images using YOLOv7 and grab cut algorithm;Frontiers in Oncology;2024-04-12
3. Advances in Feature Extraction for Brain Cancer Analysis: A Review of Traditional, Machine Learning, and Deep Learning Approaches;2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS);2024-01-28
4. Exploring and Improving Deep Learning-Based Image Filtering and Segmentation Techniques for Enhancing Leukemia Images;Communications in Computer and Information Science;2024
5. A Dual-Branch Lightweight Model for Extracting Characteristics to Classify Brain Tumors;Journal of Advances in Information Technology;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3