Location and capacity allocation for emergency contact points in large-scale power outages

Author:

Truden ChristianORCID,Wankmüller Christian,Zehetner Dominik,Gansterer Margaretha

Abstract

AbstractNowadays, industry and individuals alike are highly dependent on a reliable power supply. A large-scale power outage, commonly known as a “blackout” is caused by natural disasters, cyber attacks, technical failure, or human errors, and can lead to a variety of severe consequences. The far-reaching dynamics of blackouts can even result in the collapse of critical public service infrastructure reliant on electricity (e.g., communication, water supply, medical services, public safety). Particularly, the loss of information and communication infrastructure essential to reporting medical emergencies, and the collapse of the drinking water supply are two critical stressors for the population to cope with. One attempt to tackle this situation is to install temporary emergency contact points (ECPs) into existing infrastructure. These can be approached by the population to communicate with medical personnel and to receive drinking water. Different types of professional personnel, which is a limited resource, are required to run such ECPs. Our study introduces this tactical decision problem. We formulate it as an integer linear program for the optimal spatial allocation of ECPs, such that multiple types of human resources that are required for operating such locations can be efficiently assigned. A comprehensive numerical study, based on data of the City of Vienna, demonstrates how to reduce the walking distance of inhabitants while increasing the efficiency of resource allocation. Matrix pruning based on an enforced limit of the walking distances together with a decomposition approach is utilized to solve the considered instances.

Funder

University of Klagenfurt

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3