Abstract
AbstractThe devastating wheat stripe (yellow) rust pathogen, Puccinia striiformis f. sp. tritici (Pst), is a macrocyclic and heteroecious fungus. Pst produces urediniospores and teliospores on its primary host, wheat, and pycniospores and aeciospores are produced on its alternate hosts, barberry (Berberis spp.) or mahonia (Mahonia spp.). Basidiospores are developed from teliospores and infect alternate hosts. These five spore forms play distinct roles in Pst infection, disease development, and fungal survival, etc. However, the specific genes and mechanisms underlying these functional differences are largely unknown. In this study, we performed, for the first time in rust fungi, the deep RNA sequencing to examine the transcriptomic shift among all five Pst spore forms. Among a total of 29,591 identified transcripts, 951 were specifically expressed in basidiospores, whereas 920, 761, 266, and 110 were specific for teliospores, pycniospores, aeciospores, and urediniospores, respectively. Additionally, transcriptomes of sexual spores, namely pycniospores and basidiospores, showed significant differences from those of asexual spores (urediniospores, teliospores, and aeciospores), and transcriptomes of urediniospores and aeciospores were more similar to each other than to the three other spore forms. Especially, the basidiospores and pycniospores which infected the berberis shows wide differences in the cell wall degrading-enzymes and mating and pheromone response genes. Besides, we also found that there are 6234 differential expressed genes between the urediniospores and pycniospores, while only have 3 genes have alternative splicing enents, suggesting that differential genes expression may make more contribution than AS. This comprehensive transcriptome profiling can substantially improve our understanding of the developmental biology of the wheat stripe rust fungus.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
the 111 Project of the Ministry of Education of China
the Open Project Program of State Key Laboratory of Crop Stress Biology for Arid Areas
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献