Decomposition of biomass gasification tar model compounds over waste tire pyrolysis char

Author:

Al-Rahbi Amal S.,Williams Paul T.ORCID

Abstract

AbstractGasification of biomass produces a syngas containing trace amounts of viscous hydrocarbon tar, which causes serious problems in downstream pipelines, valves and processing equipment. This study focuses on the use of tire-derived pyrolysis char for tar conversion using biomass tar model compounds representative of tar. The catalytic decomposition of tar model compounds, including methylnaphthalene, furfural, phenol, and toluene, over tire char was investigated using a fixed bed reactor at a bed temperature of 700 °C and 60 min time on stream. The influence of temperature, reaction time, porous texture, and acidity of the tire char was investigated with the use of methylnaphthalene as the tar model compound. Oxygenated tar model compounds were found to have higher conversion than those containing a single or multi-aromatic ring. The reactivity of tar compounds followed the order of furfural > phenol > toluene > methylnaphthalene. The conversion of the model compounds in the presence of the tire char was much higher than tar thermal cracking. Gas production increased dramatically with the introduction of tire char. The H2 potential for the studied tar model compounds was found to be in the range of 40%–50%. The activity of tire char for naphthalene removal was compared with two commercial activated carbons possessing a very well-developed porous texture. The results suggest that the influence of Brunauer-Emmett-Teller surface area of the carbon on tar cracking is negligible compared with the mineral content in the carbon samples. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Waste Management and Disposal,Renewable Energy, Sustainability and the Environment

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3