Finding an Optimal Level of GDNF Overexpression: Insights from Dopamine Cycling

Author:

Marshall PepinORCID

Abstract

AbstractThe application of glial cell line-derive neurotrophic factor (GDNF) to cell cultures and animal models has demonstrated positive effects upon dopaminergic neuronal survival and development, function, restoration, and protection. On this basis, recombinant GDNF protein has been trialled in the treatment of late-stage human Parkinson’s disease patients with only limited success that is likely due to a lack of viable receptor targets in an advanced state of neurodegeneration. The latest research points to more refined approaches of modulating GDNF signalling and an optimal quantity and spatial regulation of GDNF can be extrapolated using regulation of dopamine as a proxy measure. The basic research literature on dopaminergic effects of GDNF in animal models is reviewed, concluding that a twofold increase in natively expressing cells increases dopamine turnover and maximises neuroprotective and beneficial motor effects whilst minimising hyperdopaminergia and other side-effects. Methodological considerations for measurement of dopamine levels and neuroanatomical distinctions are made between populations of dopamine neurons and their respective effects upon movement and behaviour that will inform future research into this still-relevant growth factor. Graphical Abstract

Funder

University of Helsinki including Helsinki University Central Hospital

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Cellular and Molecular Neuroscience,General Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3