Inhibiting PI3K/Akt-Signaling Pathway Improves Neurobehavior Changes in Anti-NMDAR Encephalitis Mice by Ameliorating Blood–Brain Barrier Disruption and Neuronal Damage

Author:

Gong ZhuoweiORCID,Lao DayuanORCID,Wu Yu,Li TaiyanORCID,Lv Sirao,Mo Xuean,Huang WenORCID

Abstract

AbstractThe disruption of the blood–brain barrier (BBB) is hypothesized to be involved in the progression of anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis, but its mechanism is still unclear. Recently, the phosphatidylinositol 3-kinase (PI3K)/threonine kinase (Akt) pathway is involved in the regulation of the BBB in various diseases. This study is aimed to investigate the mechanism of BBB damage and neurobehavior changes in anti-NMDAR encephalitis mice. Female C57BL/6J mice were actively immunized to establish an anti-NMDAR encephalitis mouse model and evaluate the neurobehavior changes of mice. To study its potential mechanism, LY294002 (PI3K inhibitor, 8 mg/kg) and Recilisib (PI3K agonist, 10 mg/kg) were treated by intraperitoneal injection, respectively. Anti-NMDAR encephalitis mice showed neurological deficits, increased BBB permeability, open endothelial tight junctions (TJs), and decreased expression of TJ-related proteins zonula occludens (ZO)-1 and Claudin-5. However, administration of PI3K inhibitor significantly reduced the expression of p-PI3K and p-Akt, improved neurobehavior function, decreased BBB permeability, and upregulated the expressions of ZO-1 and Claudin-5. Furthermore, PI3K inhibition reversed the decline of NMDAR NR1 in the membranes of hippocampal neurons, which reduced the loss of neuron-specific nucleoprotein (NeuN) and microtubule-associated protein 2 (MAP2). In contrast, administration of the PI3K agonist Recilisib showed a tendency to exacerbate BBB breakdown and neurological deficits. Our results showed that the activation of PI3K/Akt, along with the changes in TJ-related proteins ZO-1 and Claudin-5, may be closely related to BBB damage and neurobehavior changes in anti-NMDAR encephalitis mice. PI3K inhibition attenuates BBB disruption and neuronal damage in mice, thereby improving neurobehavior.

Funder

National Natural Science Foundation of China

the Natural Science Foundation of Guangxi Province

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Cellular and Molecular Neuroscience,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3