Non-numerical weakly relational domains

Author:

Seidl Helmut,Erhard Julian,Tilscher Sarah,Schwarz Michael

Abstract

AbstractThe weakly relational domain of Octagons offers a decent compromise between precision and efficiency for numerical properties. Here, we are concerned with the construction of non-numerical relational domains. We provide a general construction of weakly relational domains, which we exemplify with an extension of constant propagation by disjunctions. Since for the resulting domain of 2-disjunctive formulas satisfiability is NP-complete, we provide a general construction for a further, more abstract, weakly relational domain where the abstract operations of restriction and least upper bound can be efficiently implemented. In the second step, we consider a relational domain that tracks conjunctions of inequalities between variables, and between variables and constants for arbitrary partial orders of values. Examples are sub(multi)sets, as well as prefix, substring or scattered substring orderings on strings. When the partial order is a lattice, we provide precise polynomial algorithms for satisfiability, restriction, and the best abstraction of disjunction. Complementary to the constructions for lattices, we find that, in general, satisfiability of conjunctions is NP-complete. We therefore again provide polynomial abstract versions of restriction, conjunction, and join. By using our generic constructions, these domains are extended to weakly relational domains that additionally track disjunctions. For all our domains, we indicate how abstract transformers for assignments and guards can be constructed.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Challenges of software verification: the past, the present, the future;International Journal on Software Tools for Technology Transfer;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3