Ginsenoside Rh4 inhibits inflammation-related hepatocellular carcinoma progression by targeting HDAC4/IL-6/STAT3 signaling

Author:

Jiang Ruiyuan,Luo Shujuan,Zhang Meng,Wang Wei,Zhuo Shaoyuan,Wu Yajing,Qiu Qingmei,Yuan Yuan,Jiang XiaoORCID

Abstract

AbstractThis study aimed to investigate the effects of Ginsenoside Rh4 (Rh4) on inflammation-related hepatocellular carcinoma (HCC) progression and the underlying mechanism. HCC cells (HUH7 and LM3) were induced by lipopolysaccharide (LPS) to establish an inflammatory environment in the absence or presence of Rh4. CCK-8, wound healing and transwell assays were employed to analyze the viability, migration and invasion of HCC cells. Ki67 expression was detected by immunofluorescence method. Besides, the levels of glucose and lactic acid were tested by kits. The expression of proteins related to migration, glycolysis and histone deacetylase 4 (HDAC4)/IL-6/STAT3 signaling was measured with western blot. The transplantation tumor model of HCC in mice was established to observe the impacts of Rh4 on the tumor growth. Results indicated that Rh4 restricted the viability and Ki67 expression in HCC cells exposed to LPS. The elevated migration and invasion of HCC cells triggered by LPS were reduced by Rh4. Additionally, Rh4 treatment remarkably decreased the contents of glucose and lactic acid and downregulated LDHA and GLUT1 expression. The database predicated that Rh4 could target HDAC4, and our results revealed that Rh4 downregulated HDAC4, IL-6 and p-STAT3 expression. Furthermore, the enforced HDAC4 expression alleviated the effects of Rh4 on the proliferation, migration, invasion and glycolysis of HCC cells stimulated by LPS. Taken together, Rh4 could suppress inflammation-related HCC progression by targeting HDAC4/IL-6/STAT3 signaling. These findings clarify a new anti-cancer mechanism of Rh4 on HCC and provide a promising agent to limit HCC development.

Funder

Doctoral Scientific Research Foundation of Guangxi University of Chinese Medicine

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3