1. D’Amico, B., Myers, R.J., Sykes, J., Voss, E., Cousins-Jenvey, B., Fawcett, W., Richardson, S., Kermani, A., Pomponi, F.: Machine learning for sustainable structures: a call for data. Structures 19, 1–4 (2019). https://doi.org/10.1016/j.istruc.2018.11.013
2. D’Amico, A., Ciulla, G., Traverso, M., Lo Brano, V., Palumbo, E.: Artificial Neural Networks to assess energy and environmental performance of buildings: an Italian case study. J. Clean. Prod. 239, 117993 (2019). https://doi.org/10.1016/J.JCLEPRO.2019.117993
3. Li, Y., Zhang, H., Roy, U., Lee, Y.T.: A data-driven approach for improving sustainability assessment in advanced manufacturing. In: Nie, J.Y., Obradovic, Z., Suzumura, T., Ghosh, R., Nambiar, R., Wang, C., Zang, H., BaezaYates, R., Hu, X., Kepner, J., Cuzzocrea, A., Tang, J., Toyoda, M. (eds.) IEEE International Conference on Big Data (Big Data). IEEE, Boston (2017)
4. Kitchenham, B., Charters, S.: Guidelines for performing Systematic Literature Reviews in Software Engineering, UK (2007)
5. Dresch, A., Lacerda, D.P., Antunes Junior, J.A.V.: Design Science Research: A Method for Science and Technology Advancement. Springer, Cham (2015)