Echo from Noise: Synthetic Ultrasound Image Generation Using Diffusion Models for Real Image Segmentation

Author:

Stojanovski DavidORCID,Hermida UxioORCID,Lamata PabloORCID,Beqiri ArianORCID,Gomez AlbertoORCID

Abstract

AbstractWe propose a novel pipeline for the generation of synthetic ultrasound images via Denoising Diffusion Probabilistic Models (DDPMs) guided by cardiac semantic label maps. We show that these synthetic images can serve as a viable substitute for real data in the training of deep-learning models for ultrasound image analysis tasks such as cardiac segmentation. To demonstrate the effectiveness of this approach, we generated synthetic 2D echocardiograms and trained a neural network for segmenting the left ventricle and left atrium. The performance of the network trained on exclusively synthetic images was evaluated on an unseen dataset of real images and yielded mean Dice scores of $$88.6 \pm 4.91$$ 88.6 ± 4.91 , $$91.9 \pm 4.22$$ 91.9 ± 4.22 , $$85.2 \pm 4.83$$ 85.2 ± 4.83 % for left ventricular endocardium, epicardium and left atrial segmentation respectively. This represents a relative increase of 9.2, 3.3 and 13.9% in Dice scores compared to the previous state-of-the-art. The proposed pipeline has potential for application to a wide range of other tasks across various medical imaging modalities.

Publisher

Springer Nature Switzerland

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Discriminative Hamiltonian variational autoencoder for accurate tumor segmentation in data-scarce regimes;Neurocomputing;2024-11

2. Generating multi-pathological and multi-modal images and labels for brain MRI;Medical Image Analysis;2024-10

3. Cardiac ultrasound simulation for autonomous ultrasound navigation;Frontiers in Cardiovascular Medicine;2024-08-13

4. Echocardiography Video Synthesis from End Diastolic Semantic Map Via Diffusion Model;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

5. Generation of Synthetic Echocardiograms Using Video Diffusion Models;2024 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI);2024-03-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3