Abstract
AbstractWe propose a novel logic, called Frame Logic (FL), that extends first-order logic (with recursive definitions) using a construct $$\textit{Sp}(\cdot )$$
Sp
(
·
)
that captures the implicit supports of formulas— the precise subset of the universe upon which their meaning depends. Using such supports, we formulate proof rules that facilitate frame reasoning elegantly when the underlying model undergoes change. We show that the logic is expressive by capturing several data-structures and also exhibit a translation from a precise fragment of separation logic to frame logic. Finally, we design a program logic based on frame logic for reasoning with programs that dynamically update heaps that facilitates local specifications and frame reasoning. This program logic consists of both localized proof rules as well as rules that derive the weakest tightest preconditions in FL.
Publisher
Springer International Publishing
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献