Evolving Through the Looking Glass: Learning Improved Search Spaces with Variational Autoencoders

Author:

Bentley Peter J.,Lim Soo Ling,Gaier Adam,Tran Linh

Abstract

AbstractNature has spent billions of years perfecting our genetic representations, making them evolvable and expressive. Generative machine learning offers a shortcut: learn an evolvable latent space with implicit biases towards better solutions. We present SOLVE: Search space Optimization with Latent Variable Evolution, which creates a dataset of solutions that satisfy extra problem criteria or heuristics, generates a new latent search space, and uses a genetic algorithm to search within this new space to find solutions that meet the overall objective. We investigate SOLVE on five sets of criteria designed to detrimentally affect the search space and explain how this approach can be easily extended as the problems become more complex. We show that, compared to an identical GA using a standard representation, SOLVE with its learned latent representation can meet extra criteria and find solutions with distance to optimal up to two orders of magnitude closer. We demonstrate that SOLVE achieves its results by creating better search spaces that focus on desirable regions, reduce discontinuities, and enable improved search by the genetic algorithm.

Publisher

Springer International Publishing

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SCAPE: Searching Conceptual Architecture Prompts using Evolution;2024 IEEE Congress on Evolutionary Computation (CEC);2024-06-30

2. The Adaptive Search Strategy Selection Based on the Guide of Two Learning Mechanisms for High-Dimensional Expensive Problems;2023 5th International Conference on Data-driven Optimization of Complex Systems (DOCS);2023-09-22

3. Dual-drive collaboration surrogate-assisted evolutionary algorithm by coupling feature reduction and reconstruction;Complex & Intelligent Systems;2023-07-17

4. Dynamic Chromosome Interpretation in Evolutionary Algorithms for Distributed Energy Resources Scheduling;Proceedings of the Companion Conference on Genetic and Evolutionary Computation;2023-07-15

5. Using a Variational Autoencoder to Learn Valid Search Spaces of Safely Monitored Autonomous Robots for Last-Mile Delivery;Proceedings of the Genetic and Evolutionary Computation Conference;2023-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3