Publisher
Springer International Publishing
Reference42 articles.
1. V.L. Deringer, Modelling and understanding battery materials with machine-learning-driven atomistic simulations. J. Phys. Energy 2(4), 041003 (2020)
2. A. Bhowmik et al., A perspective on inverse design of battery interphases using multi-scale modelling, experiments and generative deep learning. Energy Storage Mater. 21, 446–456 (2019)
3. K. Smith, et al., Computational Design of Batteries from Materials to Systems, National Renewable Energy Lab.(NREL), Golden, CO (United States) (2017)
4. S. Curtarolo et al., The high-throughput highway to computational materials design. Nat. Mater. 12(3), 191–201 (2013)
5. A. Van der Ven et al., Rechargeable alkali-ion battery materials: theory and computation. Chem. Rev. 120(14), 6977–7019 (2020)