1. Athiwaratkun, B., Finzi, M., Izmailov, P., Wilson, A.G.: There are many consistent explanations of unlabeled data: why you should average. In: ICLR (2019)
2. Berthelot, D., et al.: ReMixMatch: Semi-supervised learning with distribution alignment and augmentation anchoring. arXiv preprint arXiv:1911.09785 (2019)
3. Chen, W., Liu, Y., Kira, Z., Wang, Y.F., Huang, J.: A closer look at few-shot classification. In: ICLR (2019)
4. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: CVPR (2017)
5. De, S., Smith, S.L.: Batch normalization has multiple benefits: an empirical study on residual networks (2020). https://openreview.net/forum?id=BJeVklHtPr