Prediction Models for Polycystic Ovary Syndrome Using Data Mining
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-71782-7_19
Reference15 articles.
1. Speca, S., Napolitano, C., Tagliaferri, G.: The pathogenetic enigma of polycystic ovary syndrome. J. Ultrasound 10(4), 153–160 (2007)
2. Polson, D., Wadsworth, J., Adams, J., Franks, S.: Polycystic ovaries—a common finding in normal women. Lancet 331(8590), 870–872 (1988)
3. Franks, S.: Polycystic ovary syndrome: a changing perspective. Clin. Endocrinol. 31(1), 87–120 (1989)
4. Balen, A., Conway, G., Kaltsas, G., Techatraisak, K., Manning, P., West, C., Jacobs, H.: Andrology: polycystic ovary syndrome: the spectrum of the disorder in 1741 patients. Hum. Reprod. 10(8), 2107–2111 (1995)
5. Soni, P., Vashisht, S.: Exploration on polycystic ovarian syndrome and data mining techniques. In: 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 816–820 (2018)
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Polycystic Ovary Syndrome (PCOS) Disease Prediction Using Machine Learning;2024 IEEE International Conference on Contemporary Computing and Communications (InC4);2024-03-15
2. Computational intelligence for early detection of infertility in women;Engineering Applications of Artificial Intelligence;2024-01
3. Machine Learning for the Proactive Identification of Polycystic Ovary Syndrome (PCOS): Empowering Women’s Health;Lecture Notes in Networks and Systems;2024
4. Diagnosis of Polycystic Ovary Syndrome Using Machine Learning Models: A Comparative Analysis;2023 Innovations in Power and Advanced Computing Technologies (i-PACT);2023-12-08
5. A Distinctive Explainable Machine Learning Framework for Detection of Polycystic Ovary Syndrome;Applied System Innovation;2023-02-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3