Publisher
Springer Nature Switzerland
Reference28 articles.
1. Al-Maliki, S.F., Vidal, F.P.: Visualisation, optimisation and Machine Learning: application in PET Reconstruction and Pea segmentation in MRI Images. Ph.D. thesis, Bangor University (2020)
2. Blank, J., Deb, K.: pymoo: multi-Objective Optimization in Python. IEEE Access 8, 89497–89509 (2020). https://doi.org/10.1109/ACCESS.2020.2990567
3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). https://doi.org/10.1109/4235.996017
4. Deb, K., Sindhya, K., Okabe, T.: Self-adaptive simulated binary crossover for real-parameter optimization. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO 2007, pp. 1187–1194. Association for Computing Machinery, New York (2007). https://doi.org/10.1145/1276958.1277190
5. Freitas, D.: Novel insights into starch digestion and the glycaemic response: from in vitro digestions to a human study using magnetic resonance imaging (MRI). Ph.D. thesis, Université Paris-Saclay (2018)