Author:
Baweja Shubham,Pokharna Neeti,Ustimenko Aleksei,Jeunen Olivier
Publisher
Springer Nature Switzerland
Reference11 articles.
1. Budylin, R., Drutsa, A., Katsev, I., Tsoy, V.: Consistent transformation of ratio metrics for efficient online controlled experiments. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, WSDM 2018, pp. 55–63. ACM (2018). https://doi.org/10.1145/3159652.3159699
2. Chapelle, O., Joachims, T., Radlinski, F., Yue, Y.: Large-scale validation and analysis of interleaved search evaluation. ACM Trans. Inf. Syst. 30(1), 1–41 (2012). https://doi.org/10.1145/2094072.2094078
3. Deng, A., Xu, Y., Kohavi, R., Walker, T.: Improving the sensitivity of online controlled experiments by utilizing pre-experiment data. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, WSDM 2013, pp. 123–132. ACM (2013). https://doi.org/10.1145/2433396.2433413
4. Guo, Y., Coey, D., Konutgan, M., Li, W., Schoener, C., Goldman, M.: Machine learning for variance reduction in online experiments. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems, vol. 34, pp. 8637–8648. Curran Associates, Inc. (2021)
5. Jeunen, O.: A common misassumption in online experiments with machine learning models. SIGIR Forum 57(1), 1–9 (2023). https://doi.org/10.1145/3636341.3636358
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Learning Metrics that Maximise Power for Accelerated A/B-Tests;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24