1. Ahmed, K., et al.: Pylon: a Pytorch framework for learning with constraints. In: NeurIPS 2021 Competitions and Demonstrations Track, pp. 319–324. PMLR (2022)
2. Austin, J., et al.: Program synthesis with large language models. arXiv preprint arXiv:2108.07732 (2021)
3. Bowman, S., Angeli, G., Potts, C., Manning, C.D.: A large annotated corpus for learning natural language inference. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 632–642 (2015)
4. Chen, B., et al.: Codet: code generation with generated tests. arXiv preprint arXiv:2207.10397 (2022)
5. Chen, M., et al.: Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374 (2021)