Overground walking while using a virtual reality head mounted display increases variability in trunk kinematics and reduces dynamic balance in young adults

Author:

Horsak BrianORCID,Simonlehner Mark,Dumphart Bernhard,Siragy Tarique

Abstract

AbstractThis study analyzed the effects of walking freely in virtual reality (VR) compared to walking in the real-world on dynamic balance and postural control. For this purpose, nine male and twelve female healthy participants underwent standard 3D gait analysis while walking randomly in a real laboratory and in a room-scale overground VR environment resembling the real laboratory. The VR was delivered to participants by a head-mounted-display which was operated wirelessly and calibrated to the real-world. Dynamic balance and postural control were assessed with (1) the margin of stability (MOS) in the anteroposterior (AP-MOS) and mediolateral (ML-MOS) directions at initial-contact, (2) the relationship between the mediolateral center of mass (COM) position and acceleration at mid-stance with subsequent step width, (3) and trunk kinematics during the entire gait cycle. We observed increased mediolateral (ML) trunk linear velocity variability, an increased coupling of the COM position and acceleration with subsequent step width, and a decrease in AP-MOS while walking in VR but no change in ML-MOS when walking in VR. Our findings suggest that walking in VR may result in a less reliable optical flow, indicated by increased mediolateral trunk kinematic variability, which seems to be compensated by the participants by slightly reweighing sensorimotor input and thereby consciously tightening the coupling between the COM and foot placement to avoid a loss of balance. Our results are particularly valuable for future developers who want to use VR to support gait analysis and rehabilitation.

Funder

Österreichische Forschungsförderungsgesellschaft

Gesellschaft für Forschungsförderung Niederösterreich

FH St. Pölten - University of Applied Sciences

Publisher

Springer Science and Business Media LLC

Subject

Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3