Skip to main content
Log in

Synergistic regulation of pore and grain by hot pressing for enhanced thermoelectric properties of Bi0.35Sb1.65Te3

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Over the years, Bi2Te3-based alloys have garnered considerable recognition as exceptional thermoelectric materials. Researchers have diligently pursued avenues to enhance the properties of these materials, with a primary focus on reducing thermal conductivity while maintaining optimal electrical performance. Nonetheless, achieving this delicate balance has proven to be a formidable challenge. In this study, we present a novel synergistic optimization approach that entails manipulating the grain refinement and porous structure of the material through precise adjustments in cooling rate and relief temperature during the direct current hot pressing process. By meticulously controlling these parameters, we successfully engineered a multiscale microstructure that effectively promotes phonon scattering. Simultaneously, we optimized carrier concentration. The outcomes of our investigation are truly remarkable, as we attained a peak zT value of approximately 1.23 at 325 K, accompanied by an outstanding average zTave of approximately 1.2 across the temperature range of 300–400 K in the 6.5% porosity-Bi0.35Sb1.65Te3 sample. These findings underscore the efficacy of the multiple synergies employed in our study. Moreover, our research provides a solid foundation for further exploration of complex micro structure modification techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data underlying this article are available in the article and in its online supplementary material.

References

  1. J.H. Lim, I. Yoo, M.Y. Park et al., Electrical/themoelectric characterization of electrodeposited BixSb2-xTe3 thin films. AIP Conf Proc Am Inst Phys 1449(1), 91–94 (2012)

    Article  ADS  Google Scholar 

  2. S.I. Kim, K.H. Lee, H.A. Mun et al., Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348(6230), 109–114 (2015)

    Article  ADS  PubMed  Google Scholar 

  3. B. Cai, H.L. Zhuang, Q. Cao et al., Practical high-performance (Bi, Sb)2Te3-based thermoelectric nanocomposites fabricated by nanoparticle mixing and scrap recycling. ACS Appl. Mater. Interfaces 12(14), 16426–16435 (2020)

    Article  PubMed  Google Scholar 

  4. G. Zheng, X. Su, H. Xie et al., High thermoelectric performance of p-BiSbTe compounds prepared by ultra-fast thermally induced reaction. Energy Environ. Sci. 10(12), 2638–2652 (2017)

    Article  Google Scholar 

  5. S. Hwang, S.I. Kim, K. Ahn et al., Enhancing the thermoelectric properties of p-type bulk Bi-Sb-Te nanocomposites via solution-based metal nanoparticle decoration. J. Electron. Mater. 42, 1411–1416 (2013)

    Article  ADS  Google Scholar 

  6. T. Zhu, Z. Xu, J. He et al., Hot deformation induced bulk nanostructuring of unidirectionally grown p-type (Bi, Sb)2Te3 thermoelectric materials. J Mater Chem A 1(38), 11589–11594 (2013)

    Article  Google Scholar 

  7. M.K. Han, S. Kim, H.Y. Kim et al., An alternative strategy to construct interfaces in bulk thermoelectric material: nanostructured heterophase Bi2 Te3/Bi2S3. RSC Adv. 3(14), 4673–4679 (2013)

    Article  ADS  Google Scholar 

  8. T. Xing, R. Liu, F. Hao et al., Suppressed intrinsic excitation and enhanced thermoelectric performance in AgxBi0.5Sb1.5−xTe3. J Mater Chem C. 5(47), 12619–12628 (2017)

    Article  Google Scholar 

  9. C. Tan, X. Tan, B. Yu et al., Synergistically optimized thermoelectric performance in Bi0.48Sb1.52Te3 by hot deformation and Cu doping. ACS Appl Energy Mater. 2(9), 6714–6719 (2019)

    Article  Google Scholar 

  10. S. Li, X. Liu, Y. Liu et al., Optimized hetero-interfaces by tuning 2D SnS2 thickness in Bi2Te2.7Se0.3/SnS2 nanocomposites to enhance thermoelectric performance. Nano Energy 39, 297–305 (2017)

    Article  Google Scholar 

  11. S. Liu, H. Li, W. Han et al., Realizing the interface tuned thermoelectric transport performance in Bi2Te3-based hierarchical nanostructures. J. Phys. Chem. C 123(39), 23817–23825 (2019)

    Article  Google Scholar 

  12. Z. Li, X. Yang, Q. Wang et al., Bi(2–x)SbxTe3 thermoelectric composites with high average ZT values: from materials to devices. Mat. Lab 1, 220026 (2022)

    Google Scholar 

  13. B. Xu, T. Feng, M.T. Agne et al., Highly porous thermoelectric nanocomposites with low thermal conductivity and high fig. of merit from large-scale solution-synthesized Bi2Te2.5Se0.5 hollow nanostructures. Angew. Chem. 129(13), 3600–3605 (2017)

    Article  ADS  Google Scholar 

  14. C. Nagarjuna, P. Dharmaiah, J.H. Lee et al., Formation of inhomogeneous micro-scale pores attributed ultralow κlat and concurrent enhancement of thermoelectric performance in p-type Bi0.5Sb1.5Te3 alloys. J. Alloys Compd. 881, 160499 (2021)

    Article  Google Scholar 

  15. P. Zhao, F. Yu, B. Wang et al., Porous bismuth antimony telluride alloys with excellent thermoelectric and mechanical properties. J Mater Chem A 9(8), 4990–4999 (2021)

    Article  Google Scholar 

  16. Y. Zheng, T.J. Slade, L. Hu et al., Defect engineering in thermoelectric materials: what have we learned? Chem. Soc. Rev. 50(16), 9022–9054 (2021)

    Article  PubMed  Google Scholar 

  17. E.G. Seebauer, K.W. Noh, Trends in semiconductor defect engineering at the nanoscale. Mater. Sci. Eng. R. Rep. 70(3–6), 151–168 (2010)

    Article  Google Scholar 

  18. J. Hu, C. Jiang, B. Feng et al., Introduction of porous structure: a feasible and promising method for improving thermoelectric performance of Bi2Te3 based bulks. J. Mater. Sci. Technol. 34(12), 2458–2463 (2018)

    Article  Google Scholar 

  19. H. Zhao, B. Xu, Z. Ding et al., Enhancing thermoelectric properties of p-type (Bi, Sb)2Te3 via porous structures. Ceram. Int. 49(3), 4305–4312 (2023)

    Article  Google Scholar 

  20. C. Kim, Y. Yang, J.Y. Baek et al., Concurrent defects of intrinsic tellurium and extrinsic silver in an N-type Bi2Te2.88Se0.15 thermoelectric material. Nano Energy 60, 26–35 (2019)

    Article  Google Scholar 

  21. C. Kim, D.H. Lopez, D.H. Kim et al., Dual defect system of tellurium antisites and silver interstitials in off-stoichiometric Bi2(Te, Se)3+y causing enhanced thermoelectric performance. J Mater Chem A 7(2), 791–800 (2019)

    Article  Google Scholar 

  22. F. Tuomisto, I. Makkonen, Defect identification in semiconductors with positron annihilation: experiment and theory. Rev. Mod. Phys. 85(4), 1583–1631 (2013)

    Article  ADS  Google Scholar 

  23. M. Takashiri, K. Miyazaki, H. Tsukamoto, Structural and thermoelectric properties of fine-grained Bi0.4Te3.0Sb1.6 thin films with preferred orientation deposited by flash evaporation method. Thin Solid Films 516(18), 6336–6343 (2008)

    Article  ADS  Google Scholar 

  24. X. Zhi Cai, X. Wu Han, C. Cheng Zhang et al., Evolution of thermoelectric performance for (Bi, Sb)2Te3 alloys from cutting waste powders to bulks with high Fig. of merit. J. Solid State Chem. 233, 186–193 (2016)

    Article  ADS  Google Scholar 

  25. Z.C. Cheng, X. An et al., The effect of porous and milling induced defects on the thermoelectric properties of p-Type Bi2Te3-based bulks. Adv. Eng. Mater. 18(10), 1777–1784 (2016)

    Article  Google Scholar 

  26. Y.K. Zhu, J. Guo, Y.X. Zhang et al., Ultralow lattice thermal conductivity and enhanced power generation efficiency realized in Bi2Te2.7Se0.3/Bi2S3 nanocomposites. Acta Mater. 218, 117230 (2021)

    Article  Google Scholar 

  27. Z.J. Xu, L.P. Hu, P.J. Ying et al., Enhanced thermoelectric and mechanical properties of zone melted p-type (Bi, Sb)2Te3 thermoelectric materials by hot deformation. Acta Mater. 854, 385–392 (2015)

    Article  Google Scholar 

  28. F. Cai, X. Chen, G. Yuan et al., Sulfur simultaneously act as pore-forming agent and doping agent to improve the thermoelectric properties of Bi2Te2.7Se0.3. J. Alloys Compd. 819, 153384 (2020)

    Article  Google Scholar 

  29. Q. Shi, X. Zhao, Y. Chen et al., Cu2Te incorporation-induced high average thermoelectric performance in p-Type Bi2Te3 alloys. ACS Appl. Mater. Interfaces 14(40), 45582–45589 (2022)

    Article  PubMed  Google Scholar 

  30. Z. Xu, H. Wu, T. Zhu et al., Attaining high mid-temperature performance in (Bi, Sb)2Te3 thermoelectric materials via synergistic optimization. NPG Asia Materials 8(9), e302–e302 (2016)

    Article  Google Scholar 

  31. D. Das, K. Malik, A.K. Deb et al., Defect induced structural and thermoelectric properties of Sb2Te3 alloy. J. Appl. Phys. (2015). https://doi.org/10.1063/1.4927283

    Article  Google Scholar 

  32. G.G. Lee, D.Y. Lee, G.H. Ha, Synthesis of Bi-Sb-Te thermoelectric material by the plasma arc discharge process. Met. Mater. Int. 17, 245–250 (2011)

    Article  Google Scholar 

  33. Q. Zhang, M. Yuan, K. Pang et al., High-performance industrial-grade p-Type (Bi, Sb)2Te3 thermoelectric enabled by a stepwise optimization strategy. Adv. Mater. 35(21), 2300338 (2023)

    Article  Google Scholar 

  34. L. Zhou, X. Chong, Z. Hao et al., Defect chemistry for thermoelectric materials. J. Am. Chem. Soc. 138(45), 14810 (2016)

    Article  Google Scholar 

  35. K. Zhao, H. Duan, N. Raghavendra et al., Solid-state explosive reaction for nanoporous bulk thermoelectric materials. Thermal conductivity of solids. Adv. Mater. (2017). https://doi.org/10.1002/adma.201701148

    Article  PubMed  PubMed Central  Google Scholar 

  36. X. Hu, J. Hu, X. Fan et al., Artificial porous structure: an effective method to improve thermoelectric performance of Bi2Te3 based alloys. J Solid State Chem France 282, 121060 (2020)

    Article  Google Scholar 

  37. Q. Shi, X. Chen, Y. Chen et al., Broadening temperature plateau of high zTs in PbTe doped Bi0.3Sb1.7Te3 through defect carrier regulation and multi-scale phonon scattering. Materials Today Physics 22, 100610 (2022)

    Article  Google Scholar 

  38. B. Madavali, H.S. Kim, K.H. Lee et al., Enhanced Seebeck coefficient by energy filtering in Bi-Sb-Te based composites with dispersed Y2O3 nanoparticles. Intermetallics 82, 68–75 (2017)

    Article  Google Scholar 

  39. L. Zhao, W. Qiu, Y. Sun et al., Enhanced thermoelectric performance of Bi0.3Sb1.7Te3 based alloys by dispersing TiC ceramic nanoparticles. J. Alloys Compd. 863, 158376 (2021)

    Article  Google Scholar 

  40. H.L. Zhuang, H. Hu, J. Pei et al., High ZT in p-type thermoelectric (Bi, Sb)2Te3 with built-in nanopores. Energy Environ. Sci. 15(5), 2039–2048 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52372227).

Author information

Authors and Affiliations

Authors

Contributions

JH: conceptualizationt, investigation, methodology, validation, visualization, writing—original draft; ZH, JD, TS, MS, FC: investigation, resources, supervision, visualization; QZ: conceptualization, funding acquisition, resources, supervision, writing—review & editing.

Corresponding author

Correspondence to Qinyong Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 504 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Hu, Z., Ding, J. et al. Synergistic regulation of pore and grain by hot pressing for enhanced thermoelectric properties of Bi0.35Sb1.65Te3. Appl. Phys. A 130, 184 (2024). https://doi.org/10.1007/s00339-024-07293-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07293-1

Keywords

Navigation