Connected sets of positive solutions of elliptic systems in exterior domains

Author:

Orpel Aleksandra

Abstract

Abstract The existence of infinitely many connected sets of positive solutions for a certain elliptic system is investigated in this paper. We consider semilinear equations with perturbed Laplace operators described in an exterior domain. We show that each of these solutions $$\mathbf {u}=( u_{1},u_{2})$$u=(u1,u2) has the minimal asymptotic decay, namely $$ u_{i}(x)=O(||x||^{2-n})$$ui(x)=O(||x||2-n) as $$||x||\rightarrow \infty ,$$||x||,$$i=1,2,$$i=1,2, and finite energy in a neighborhood of infinity. Our main tool is the sub and super-solutions theorem which is based on the Sattinger’s iteration procedure. We do not need any growth assumptions concerning nonlinearities.

Funder

University of Lodz

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference36 articles.

1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Commun. Pure Appl. Math. 12, 623–727 (1959)

2. Ambrosetti, A., Ruiz, D.: Multiple bound states for the Schröldinger–Poisson problem. Commun. Contemp. Math. 10, 391–404 (2008)

3. Ambrosetti, A.: On Schrödinger–Poisson systems. Milan J. Math. 76, 257–274 (2008)

4. Aris, R.: The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts. Clarendon Press, Oxford (1975)

5. Bandle, C., Greco, A., Porru, G.: Large solutions of quasilinear elliptic equations: existence and qualitative properties. Boll. Un. Mat. Ital. B (7) 11(1), 227–252 (1997)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stochastic production planning with regime switching;Journal of Industrial and Management Optimization;2023

2. On the existence of nonnegative radial solutions for Dirichlet exterior problems on the Heisenberg group;Demonstratio Mathematica;2023-01-01

3. Monotonic sequences of minimal solutions for semipositone elliptic systems;Mathematical Methods in the Applied Sciences;2022-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3