Examining the giant barrel sponge species complex: molecular and microbial differentiation of Xestospongia testudinaria in Singapore

Author:

Deignan Lindsey K.ORCID,Dansson RaiyanORCID,Loh Aaron An Rong,Pwa Keay Hoon

Abstract

AbstractThe giant barrel sponges (Xestospongia spp.) belong to a pan-global species complex with evidence suggesting they could encompass up to 9 cryptic species. In this study, we leveraged molecular and microbial techniques to investigate giant barrel sponges (X. testudinaria) from Singapore in relation to their placement within this species complex. Twenty-four giant barrel sponges from three sites were sequenced with mitochondrial (CO1) and nuclear (ATP6) DNA markers, identifying 6 distinct haplotypes belonging to 4 of the proposed barrel sponge species. Analysis of the X. testudinaria microbiomes was achieved with 16S rRNA gene amplicon sequencing. The microbiome composition of X. testudinaria did not differ by reef site, deviating from a pattern frequently observed in coral microbiomes across Singapore. However, there was significant differentiation in microbiome composition by host genetics consistent with the proposed species boundaries. General linear models identified 85 amplicon sequence variants (ASVs) as highly significant (P < 0.01) in differentiating among the four Species Groups, consisting of 12 Archaea and 73 Bacteria, with the largest representation from phylum Chloroflexi. We also identified 52 core ASVs present in all sponges representing 33.0% of the total sequence reads. Our results support previous findings of microbiome differentiation in co-occurring genetic haplotypes of barrel sponges from the Caribbean. Together these studies underline the potential for ecological partitioning based on genetic haplotype that could contribute to cryptic speciation within the giant barrel sponge species complex.

Funder

Singapore National Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3