Improved Thermodynamic Descriptions of Carbides in Ni-Based Superalloys

Author:

Buerstmayr Richard,Schulz BerndORCID,Povoden-Karadeniz Erwin,Kozeschnik Ernst,Lison-Pick Michael,Primig SophieORCID

Abstract

AbstractThe Ni-based superalloy René 41 has sparked recent interest for applications in next-generation aircraft engines due to its high-temperature strength that is superior to all similar grades. These desirable properties are achieved by careful control of the microstructure evolution during thermomechanical processing, and this is commonly informed by simulations. In particular, the grain boundary carbides M6C and M23C6 play an essential role in controlling the grain size and strength of the final product. Therefore, a solid understanding of the thermodynamic stability and thermokinetic evolution of these carbides is essential. However, thermokinetic simulations using existing thermodynamic databases have been demonstrated to have discrepancies between thermodynamic stabilities and experimental observations. Here, we collected a new experimental time–temperature–precipitation diagram. In conjunction with improved crystallographic descriptions, these experimental results are used to modify a CALPHAD database for M6C and M23C6. The modified database correctly identifies temperature regions with rapid carbide precipitation kinetics. Further, kinetic simulations and strengthening models successfully predict the hardness increase due to γ′ precipitation. The modified database has been applied to Udimet 700, Waspaloy, and Haynes 282, demonstrating improved results. These updates will facilitate more accurate simulations of the microstructure evolution during thermomechanical processing of advanced Ni-based superalloys for aerospace and other applications.

Funder

Australian Research Council

University of New South Wales

Publisher

Springer Science and Business Media LLC

Reference40 articles.

1. R.C. Reed, The Superalloys (Cambridge University Press, Cambridge, 2006).

2. A.K. Jena, and M.C. Chaturvedi, J. Mater. Sci. 19, 3121 (1984).

3. L. M. Pike, in Superalloys 2008 (2008), pp. 191–200.

4. NiDI and INCO Ltd, High-Temperature High-Strength Nickel Base Alloys (1995).

5. W. P. Hughes, T. F. Berry, and R. E. Yount, A Study of the Strain-Age Crack Sensitivity of Rene`41 (1968).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3