Reliability and Interpretability in Science and Deep Learning

Author:

Scorzato LuigiORCID

Abstract

AbstractIn recent years, the question of the reliability of Machine Learning (ML) methods has acquired significant importance, and the analysis of the associated uncertainties has motivated a growing amount of research. However, most of these studies have applied standard error analysis to ML models—and in particular Deep Neural Network (DNN) models—which represent a rather significant departure from standard scientific modelling. It is therefore necessary to integrate the standard error analysis with a deeper epistemological analysis of the possible differences between DNN models and standard scientific modelling and the possible implications of these differences in the assessment of reliability. This article offers several contributions. First, it emphasises the ubiquitous role of model assumptions (both in ML and traditional science) against the illusion of theory-free science. Secondly, model assumptions are analysed from the point of view of their (epistemic) complexity, which is shown to be language-independent. It is argued that the high epistemic complexity of DNN models hinders the estimate of their reliability and also their prospect of long term progress. Some potential ways forward are suggested. Thirdly, this article identifies the close relation between a model’s epistemic complexity and its interpretability, as introduced in the context of responsible AI. This clarifies in which sense—and to what extent—the lack of understanding of a model (black-box problem) impacts its interpretability in a way that is independent of individual skills. It also clarifies how interpretability is a precondition for a plausible assessment of the reliability of any model, which cannot be based on statistical analysis alone. This article focuses on the comparison between traditional scientific models and DNN models. However, Random Forest (RF) and Logistic Regression (LR) models are also briefly considered.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3