Investigation on potential and limitations of ERA5 Reanalysis downscaled on Italy by a convection-permitting model

Author:

Adinolfi MariannaORCID,Raffa Mario,Reder Alfredo,Mercogliano Paola

Abstract

AbstractThis study presents a comprehensive assessment of a dynamical downscaling of ERA5 Reanalysis recently performed over Italy through the COSMO-CLM model at a convection-permitting scale (0.02°) over the period 1989–2020. Results are analysed against several independent observational datasets and reanalysis products. The capability of the downscaling to realistically represent the climatology for 2 m temperature and precipitation is analysed over the whole peninsula and subdomains. Hourly precipitation patterns, orography effects, and urban climate dynamics are also investigated, highlighting the weaknesses and strengths of the convection-permitting model. In particular, gains in performances are achieved in mountainous areas where the climate characteristics are correctly represented, as are the hourly precipitation characteristics. Losses in performances occur in coastal and flat areas of the Italian peninsula, where the convection-permitting model performance does not seem to be satisfactory, as opposed to complex orographic areas. The adopted urban parameterisation is demonstrated to simulate heat detection for two Italian cities: Rome and Milan. Finally, a subset of extreme climate indicators is evaluated, finding: (i) a region-dependent response, (ii) a notable performance of the convection-permitting model over mountainous areas and (iii) discrepancies in the South, Central and Insular subdomains. Climate indicators detect extreme events at a detailed scale, becoming an important tool for turning climate data into information.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3