Evaluation of the convection permitting regional climate model CNRM-AROME on the orographically complex island of Corsica

Author:

Cortés-Hernández Virginia EdithORCID,Caillaud Cécile,Bellon Gilles,Brisson Erwan,Alias Antoinette,Lucas-Picher Philippe

Abstract

AbstractMeteorological processes over islands with complex orography could be better simulated by Convection Permitting Regional Climate Models (CP-RCMs) thanks to an improved representation of the orography, land–sea contrasts, the combination of coastal and orographic effects, and explicit deep convection. This paper evaluates the ability of the CP-RCM CNRM-AROME (2.5-km horizontal resolution) to simulate relevant meteorological characteristics of the Mediterranean island of Corsica for the 2000–2018 period. These hindcast simulations are compared to their driving Regional Climate Model (RCM) CNRM-ALADIN (12.5-km horizontal resolution and parameterised convection), weather stations for precipitation and wind and gridded precipitation datasets. The main benefits are found in the representation of (i) precipitation extremes resulting mainly from mesoscale convective systems affected by steep mountains during autumn and (ii) the formation of convection through thermally induced diurnal circulations and their interaction with the orography during summer. Simulations of hourly precipitation extremes, the diurnal cycle of precipitation, the distribution of precipitation intensities, the duration of precipitation events, and sea breezes are all improved in the 2.5-km simulations with respect to the RCM, confirming an added value. However, existing differences between model simulations and observations are difficult to explain as the main biases are related to the availability and quality of observations, particularly at high elevations. Overall, better results from the 2.5-km resolution, increase our confidence in CP-RCMs to investigate future climate projections for Corsica and islands with complex terrain.

Funder

French National Research Agency

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3