The Arctic Carbon Cycle and Its Response to Changing Climate

Author:

Bruhwiler LoriORCID,Parmentier Frans-Jan W.ORCID,Crill PatrickORCID,Leonard Mark,Palmer Paul I.ORCID

Abstract

Abstract Purpose of Review The Arctic has experienced the most rapid change in climate of anywhere on Earth, and these changes are certain to drive changes in the carbon budget of the Arctic as vegetation changes, soils warm, fires become more frequent, and wetlands evolve as permafrost thaws. In this study, we review the extensive evidence for Arctic climate change and effects on the carbon cycle. In addition, we re-evaluate some of the observational evidence for changing Arctic carbon budgets. Recent Findings Observations suggest a more active CO2 cycle in high northern latitude ecosystems. Evidence points to increased uptake by boreal forests and Arctic ecosystems, as well as increasing respiration, especially in autumn. However, there is currently no strong evidence of increased CH4 emissions. Summary Long-term observations using both bottom-up (e.g., flux) and top-down (atmospheric abundance) approaches are essential for understanding changing carbon cycle budgets. Consideration of atmospheric transport is critical for interpretation of top-down observations of atmospheric carbon.

Funder

NOAA Research

Natural Environment Research Council

Norwegian Research Council

Swedish Research Council

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Global and Planetary Change

Reference179 articles.

1. Meredith MM, Sommerkorn S, Cassotta C, Derksen A, Ekaykin A, Hollowed et al. In: H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.) Polar Regions. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate 2019. https://www.ipcc.ch/srocc/chapter/chapter-3-2/.

2. Overland JE, Hanna E, Hanssen-Bauer I, Kim S-J, Walsh JE, Wang M, et al. In: The NOAA Arctic Report Card, Surface Air Temperature 2019, https://arctic.noaa.gov/Report-Card/Report-Card 2019/ArtMID/7916/ArticleID/835/Surface-Air-Temperature.

3. Goosse H, Kay JE, Armour KC, et al. Quantifying climate feedbacks in polar regions. Nat Commun. 2018;9(2018):1919. https://doi.org/10.1038/s41467-018-04173-0.

4. Kay JE, et al. Recent advances in Arctic cloud and climate research. Curr Clim Change Rep. 2016;2:159.

5. Pithan F, Mauritsen T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat Geosci. 2014;7:181–4.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3