Abstract
AbstractHerein, we report the role of indium (In) on the carbon monoxide sensing of ZnO thin films using a low-cost spray pyrolysis technique. The decrease in crystalline size was observed from XRD studies and hexagonal wurtzite structure was confirmed. Photoluminescence and XPS studies proved the presence of various defects in the films. The gas-sensing properties of films toward carbon monoxide (CO) gas indicate that 15 wt% of In in ZnO thin films (IZO) exhibit high response (1.84) to a low concentration of the gas (1 ppm) at 300 °C compared to undoped ZnO (0.53). The observed high response of 15 wt% IZO can be mainly endorsed to the oxygen vacancy defects as observed from the photoluminescence and XPS analysis. Further, the high response is complemented by high surface area and smaller grain size (~ 13.1 nm) with well-defined grain boundaries as evident from SEM analysis as well as XRD studies.
Funder
Manipal Academy of Higher Education, Manipal
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献