Abstract
AbstractIn this work, spray-deposited Mg0.02Zn0.98Se thin films were characterized to determine their structural, optical, and electrical properties. The optical band gap of Mg-doped ZnSe thin film was observed to be around 3.05 eV, with high optical transmittance of about 50–70% in the visible region. The crystallite size of Mg-doped ZnSe thin film was about 8 nm, as observed from the X-ray diffraction (XRD) pattern. Elemental composition of Mg-doped ZnSe thin film was confirmed from X-ray energy-dispersive analysis (EDAS). Raman study showed the development of minor strain in ZnSe system due to the incorporation of Mg. The resistivity of the Mg-doped ZnSe film was about 3.82 ohm-m with a carrier concentration of 8.2 × 1011 cm− 3. Mg0.02Zn0.98Se thin films exhibited promising opto-electronic properties such as high transparency and conductivity that are essential for a solar buffer layer that could replace relatively toxic CdS layer.
Funder
Department of Science and Technology, Ministry of Science and Technology
Manipal Academy of Higher Education, Manipal
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献