Skip to main content
Log in

Long-chain acyl-CoA synthetase 4-mediated mitochondrial fatty acid metabolism and dendritic cell antigen presentation

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

This study aims to investigate the role of Acyl-CoA synthetase 4 (ACSL4) in mediating mitochondrial fatty acid metabolism and dendritic cell (DC) antigen presentation in the immune response associated with asthma.

Methods

RNA sequencing was employed to identify key genes associated with mitochondrial function and fatty acid metabolism in DCs. ELISA was employed to assess the levels of fatty acid metabolism in DCs. Mitochondrial morphology was evaluated using laser confocal microscopy, structured illumination microscopy, and transmission electron microscopy. Flow cytometry and immunofluorescence were utilized to detect changes in mitochondrial superoxide generation in DCs, followed by immunofluorescence co-localization analysis of ACSL4 and the mitochondrial marker protein COXIV. Subsequently, pathological changes and immune responses in mouse lung tissue were observed. ELISA was conducted to measure the levels of fatty acid metabolism in lung tissue DCs. qRT-PCR and western blotting were employed to respectively assess the expression levels of mitochondrial-associated genes (ATP5F1A, VDAC1, COXIV, TFAM, iNOS) and proteins (ATP5F1A, VDAC1, COXIV, TOMM20, iNOS) in lung tissue DCs. Flow cytometry was utilized to analyze changes in the expression of surface antigens presented by DCs in lung tissue, specifically the MHCII molecule and the co-stimulatory molecules CD80/86.

Results

The sequencing results reveal that ACSL4 is a crucial gene regulating mitochondrial function and fatty acid metabolism in DCs. Inhibiting ACSL4 reduces the levels of fatty acid oxidases in DCs, increases arachidonic acid levels, and decreases A-CoA synthesis. Simultaneously, ACSL4 inhibition leads to an increase in mitochondrial superoxide production (MitoSOX) in DCs, causing mitochondrial rupture, vacuolization, and sparse mitochondrial cristae. In mice, ACSL4 inhibition exacerbates pulmonary pathological changes and immune responses, reducing the fatty acid metabolism levels within lung tissue DCs and the expression of mitochondria-associated genes and proteins. This inhibition induces an increase in the expression of MHCII antigen presentation molecules and co-stimulatory molecules CD80/86 in DCs.

Conclusions

The research findings indicate that ACSL4-mediated mitochondrial fatty acid metabolism and dendritic cell antigen presentation play a crucial regulatory role in the immune response of asthma. This discovery holds promise for enhancing our understanding of the mechanisms underlying asthma pathogenesis and potentially identifying novel targets for its prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

AA:

Arachidonic acid

ACSL4:

Acyl-CoA synthetase 4

A-CoA:

Acyl-coenzyme A

BALF:

Bronchoalveolar lavage fluid

DC:

Dendritic cell

DEGs:

Differentially expressed genes

FAO:

Fatty acid oxidases

GO:

Gene ontology

IACUC:

Institutional animal care and use committee

KEGG:

Kyoto encyclopedia of genes and genomes

MAM:

Mitochondria-associated membrane

MHCII:

Major histocompatibility complex class II

MOC:

Mander's overlap coefficient

PCC:

Pearson’s correlation coefficient

PUFA:

Polyunsaturated fatty acids

qRT-PCR:

Quantitative real-time PCR

SEM:

Standard error of the mean

SPF:

Specific pathogen-free

References

  1. Shipp CL, Gergen PJ, Gern JE, Matsui EC, Guilbert TW. Asthma management in children. J Allergy Clin Immunol Pract. 2023;11(1):9–18. https://doi.org/10.1016/j.jaip.2022.10.031.

    Article  PubMed  Google Scholar 

  2. Pijnenburg MW, Nantanda R. Rising and falling prevalence of asthma symptoms. Lancet. 2021;398(10311):1542–3. https://doi.org/10.1016/S0140-6736(21)01823-7.

    Article  PubMed  Google Scholar 

  3. Asher MI, Rutter CE, Bissell K, et al. Worldwide trends in the burden of asthma symptoms in school-aged children: Global Asthma Network Phase I cross-sectional study. Lancet. 2021;398(10311):1569–80. https://doi.org/10.1016/S0140-6736(21)01450-1.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lajiness JD, Cook-Mills JM. Catching our breath: updates on the role of dendritic cell subsets in asthma. Adv Biol (Weinh). 2023;7(6):e2200296. https://doi.org/10.1002/adbi.202200296.

    Article  PubMed  Google Scholar 

  5. Haczku A. The dendritic cell niche in chronic obstructive pulmonary disease. Respir Res. 2012;13(1):80. https://doi.org/10.1186/1465-9921-13-80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Furlong-Silva J, Cook PC. Fungal-mediated lung allergic airway disease: the critical role of macrophages and dendritic cells. PLoS Pathog. 2022;18(7):e1010608. https://doi.org/10.1371/journal.ppat.1010608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Upham JW, Xi Y. Dendritic cells in human lung disease: recent advances. Chest. 2017;151(3):668–73. https://doi.org/10.1016/j.chest.2016.09.030.

    Article  PubMed  Google Scholar 

  8. Bryant N, Muehling LM. T-cell responses in asthma exacerbations. Ann Allergy Asthma Immunol. 2022;129(6):709–18. https://doi.org/10.1016/j.anai.2022.07.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kopf M, Schneider C, Nobs SP. The development and function of lung-resident macrophages and dendritic cells. Nat Immunol. 2015;16(1):36–44. https://doi.org/10.1038/ni.3052.

    Article  CAS  PubMed  Google Scholar 

  10. Humeniuk P, Dubiela P, Hoffmann-Sommergruber K. Dendritic cells and their role in allergy: uptake, proteolytic processing and presentation of allergens. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18071491.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Akdis CA, Arkwright PD, Brüggen MC, et al. Type 2 immunity in the skin and lungs. Allergy. 2020;75(7):1582–605. https://doi.org/10.1111/all.14318.

    Article  CAS  PubMed  Google Scholar 

  12. Munson PV, Adamik J, Hartmann FJ, et al. Polyunsaturated fatty acid-bound α-fetoprotein promotes immune suppression by altering human dendritic cell metabolism. Cancer Res. 2023;83(9):1543–57. https://doi.org/10.1158/0008-5472.CAN-22-3551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Herber DL, Cao W, Nefedova Y, et al. Lipid accumulation and dendritic cell dysfunction in cancer. Nat Med. 2010;16(8):880–6. https://doi.org/10.1038/nm.2172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rehman A, Hemmert KC, Ochi A, et al. Role of fatty-acid synthesis in dendritic cell generation and function. J Immunol. 2013;190(9):4640–9. https://doi.org/10.4049/jimmunol.1202312.

    Article  CAS  PubMed  Google Scholar 

  15. Zhao F, Xiao C, Evans KS, et al. Paracrine Wnt5a-β-catenin signaling triggers a metabolic program that drives dendritic cell tolerization. Immunity. 2018;48(1):147-60.e7. https://doi.org/10.1016/j.immuni.2017.12.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mehta MM, Weinberg SE, Chandel NS. Mitochondrial control of immunity: beyond ATP. Nat Rev Immunol. 2017;17(10):608–20. https://doi.org/10.1038/nri.2017.66.

    Article  CAS  PubMed  Google Scholar 

  17. Ellis JM, Frahm JL, Li LO, Coleman RA. Acyl-coenzyme A synthetases in metabolic control. Curr Opin Lipidol. 2010;21(3):212–7. https://doi.org/10.1097/mol.0b013e32833884bb.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen WC, Wang CY, Hung YH, Weng TY, Yen MC, Lai MD. Systematic analysis of gene expression alterations and clinical outcomes for long-chain acyl-coenzyme a synthetase family in cancer. PLoS ONE. 2016;11(5):e0155660. https://doi.org/10.1371/journal.pone.0155660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kuwata H, Nakatani E, Shimbara-Matsubayashi S, Ishikawa F, Shibanuma M, Sasaki Y, Yoda E, Nakatani Y, Hara S. Long-chain acyl-CoA synthetase 4 participates in the formation of highly unsaturated fatty acid-containing phospholipids in murine macrophages. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864(11):1606–18. https://doi.org/10.1016/j.bbalip.2019.07.013.

    Article  CAS  PubMed  Google Scholar 

  20. Fujimoto Y, Itabe H, Kinoshita T, et al. Involvement of ACSL in local synthesis of neutral lipids in cytoplasmic lipid droplets in human hepatocyte HuH7. J Lipid Res. 2007;48(6):1280–92. https://doi.org/10.1194/jlr.M700050-JLR200.

    Article  CAS  PubMed  Google Scholar 

  21. Kuwata H, Hara S. Role of acyl-CoA synthetase ACSL4 in arachidonic acid metabolism. Prostaglandins Other Lipid Mediat. 2019;144:106363. https://doi.org/10.1016/j.prostaglandins.2019.106363.

    Article  CAS  PubMed  Google Scholar 

  22. Wang Y, Liao K, Liu B, et al. GITRL on dendritic cells aggravates house dust mite-induced airway inflammation and airway hyperresponsiveness by modulating CD4+ T cell differentiation. Respir Res. 2021;22(1):46. https://doi.org/10.1186/s12931-020-01583-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yuan H, Li X, Zhang X, Kang R, Tang D. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun. 2016;478(3):1338–43. https://doi.org/10.1016/j.bbrc.2016.08.124.

    Article  CAS  PubMed  Google Scholar 

  24. Jiang H, Zhang XW, Liao QL, Wu WT, Liu YL, Huang WH. Electrochemical monitoring of paclitaxel-induced ROS release from mitochondria inside single cells. Small. 2019;15(48):e1901787. https://doi.org/10.1002/smll.201901787.

    Article  CAS  PubMed  Google Scholar 

  25. Mogilenko DA, Haas JT, L’homme L, et al. Metabolic and innate immune cues merge into a specific inflammatory response via the UPR. Cell. 2019;178(1):263.

    Article  CAS  PubMed  Google Scholar 

  26. Qin T, Feng D, Zhou B, Bai L, Zhou S, Du J, Xu G, Yin Y. Melatonin attenuates lipopolysaccharide-induced immune dysfunction in dendritic cells. Int Immunopharmacol. 2023;120:110282. https://doi.org/10.1016/j.intimp.2023.110282.

    Article  CAS  PubMed  Google Scholar 

  27. Cools N, Ponsaerts P, Van Tendeloo VF, Berneman ZN. Balancing between immunity and tolerance: an interplay between dendritic cells, regulatory T cells, and effector T cells. J Leukoc Biol. 2007;82(6):1365–74. https://doi.org/10.1189/jlb.0307166.

    Article  CAS  PubMed  Google Scholar 

  28. van Helden MJ, Lambrecht BN. Dendritic cells in asthma. Curr Opin Immunol. 2013;25(6):745–54. https://doi.org/10.1016/j.coi.2013.10.002.

    Article  CAS  PubMed  Google Scholar 

  29. Liu S, Fan S, Wang Y, et al. ACSL4 serves as a novel prognostic biomarker correlated with immune infiltration in Cholangiocarcinoma. BMC Cancer. 2023;23(1):444. https://doi.org/10.1186/s12885-023-10903-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grube J, Woitok MM, Mohs A, Erschfeld S, Lynen C, Trautwein C, Otto T. ACSL4-dependent ferroptosis does not represent a tumor-suppressive mechanism but ACSL4 rather promotes liver cancer progression. Cell Death Dis. 2022;13(8):704. https://doi.org/10.1038/s41419-022-05137-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ibrahim J, Nguyen AH, Rehman A, et al. Dendritic cell populations with different concentrations of lipid regulate tolerance and immunity in mouse and human liver. Gastroenterology. 2012;143(4):1061–72. https://doi.org/10.1053/j.gastro.2012.06.003.

    Article  CAS  PubMed  Google Scholar 

  32. Killion EA, Reeves AR, El Azzouny MA, et al. A role for long-chain acyl-CoA synthetase-4 (ACSL4) in diet-induced phospholipid remodeling and obesity-associated adipocyte dysfunction. Mol Metab. 2018;9:43–56. https://doi.org/10.1016/j.molmet.2018.01.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Krawczyk CM, Holowka T, Sun J, et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood. 2010;115(23):4742–9. https://doi.org/10.1182/blood-2009-10-249540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang L, Pino-Lagos K, de Vries VC, Guleria I, Sayegh MH, Noelle RJ. Programmed death 1 ligand signaling regulates the generation of adaptive Foxp3+CD4+ regulatory T cells. Proc Natl Acad Sci U S A. 2008;105(27):9331–6. https://doi.org/10.1073/pnas.0710441105.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Miao Z, Tian W, Ye Y, et al. Hsp90 induces Acsl4-dependent glioma ferroptosis via dephosphorylating Ser637 at Drp1. Cell Death Dis. 2022;13(6):548. https://doi.org/10.1038/s41419-022-04997-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu S, He Y, Lin L, Chen P, Chen M, Zhang S. The emerging role of ferroptosis in intestinal disease. Cell Death Dis. 2021;12(4):289. https://doi.org/10.1038/s41419-021-03559-1.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kuwata H, Tomitsuka Y, Yoda E, Hara S. Role of ACSL4 in the chemical-induced cell death in human proximal tubule epithelial HK-2 cells. 2022. Biosci Rep. https://doi.org/10.1042/BSR20212433.

  38. Wu L, Yan Z, Jiang Y, Chen Y, Du J, Guo L, Xu J, Luo Z, Liu Y. Metabolic regulation of dendritic cell activation and immune function during inflammation. Front Immunol. 2023;14:1140749. https://doi.org/10.3389/fimmu.2023.1140749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zeyda M, Säemann MD, Stuhlmeier KM, Mascher DG, Nowotny PN, Zlabinger GJ, Waldhäusl W, Stulnig TM. Polyunsaturated fatty acids block dendritic cell activation and function independently of NF-kappaB activation. J Biol Chem. 2005;280(14):14293–301. https://doi.org/10.1074/jbc.M410000200.

    Article  CAS  PubMed  Google Scholar 

  40. Carlsson JA, Wold AE, Sandberg AS, Östman SM. The Polyunsaturated fatty acids arachidonic acid and docosahexaenoic acid induce mouse dendritic cells maturation but reduce T-Cell responses in vitro. PLoS ONE. 2015;10(11):e0143741. https://doi.org/10.1371/journal.pone.0143741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dang D, Zhang C, Meng Z, Lv X, Li Z, Wei J, Wu H. Integrative analysis links ferroptosis to necrotizing enterocolitis and reveals the role of ACSL4 in immune disorders. iScience. 2022;25(11):105406. https://doi.org/10.1016/j.isci.2022.105406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Scientific Natural Science Foundation of Chongqing (cstc2020jcyj-msxmX0615), Youth Project of Scientific and Technological Research of Chongqing Municipal Education Commission (KJQN202200411), Chongqing Municipal Health Commission—Joint Scientific Research Project (2023QNXM015) and China Postdoctoral Science Foundation (2021MD703923) and the Graduate Student Research and Innovation Project of Chongqing Municipality (No.CYB22211).

Funding

Scientific Natural Science Foundation of Chongqing, cstc2020jcyj-msxmX0615, Youth Project of Scientific and Technological Research of Chongqing Municipal Education Commission, KJQN202200411, Chongqing Municipal Health Commission—Joint Scientific Research Project, 2023QNXM015, China Postdoctoral Science Foundation, 2021MD703923, Graduate Student Research and Innovation Project of Chongqing Municipality, CYB222111.

Author information

Authors and Affiliations

Authors

Contributions

YL, EML, ZXL, ZF, BL and FXD were responsible for the overall conception and design of the study. YL performed most of the experiments and the data analysis, collected the data, and wrote the manuscript. YL, WLF, JYY, BL and FXD revising the manuscript. JYX, YYR, YHL and MZ contributed to the sample collection. All authors reviewed, edited and approved the manuscript.

Corresponding authors

Correspondence to Bo Liu or Fengxia Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

The study received approval from the Ethics Committee of the Children's Hospital of Chongqing Medical University (Approval No. 2022-004).

Consent for publication

Not applicable.

Additional information

Responsible Editor: L. Li.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Fu, W., Xiang, J. et al. Long-chain acyl-CoA synthetase 4-mediated mitochondrial fatty acid metabolism and dendritic cell antigen presentation. Inflamm. Res. 73, 819–839 (2024). https://doi.org/10.1007/s00011-024-01868-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-024-01868-7

Keywords

Navigation