Creating a human-induced pluripotent stem cell-based NKX2.5 reporter gene assay for developmental toxicity testing

Author:

Lauschke Karin,Treschow Andreas Frederik,Rasmussen Mikkel Aabech,Davidsen Nichlas,Holst Bjørn,Emnéus Jenny,Taxvig Camilla,Vinggaard Anne MarieORCID

Abstract

AbstractTo test large numbers of chemicals for developmental toxicity, rapid in vitro tests with standardized readouts for automated data acquisition are needed. However, the most widely used assay, the embryonic stem cell test, relies on the counting of beating embryoid bodies by visual inspection, which is laborious and time consuming. We previously developed the PluriBeat assay based on differentiation of human induced pluripotent stem cells (hiPSC) that we demonstrated to be predictive for known teratogens at relevant concentrations using the readout of beating cardiomyocytes. Here, we report the development of a novel assay, which we term the PluriLum assay, where we have introduced a luciferase reporter gene into the locus of NKX2.5 of our hiPSC line. This enabled us to measure luminescence intensities instead of counting beating cardiomyocytes, which is less labor intensive. We established two NKX2.5 reporter cell lines and validated their pluripotency and genetic stability. Moreover, we confirmed that the genetically engineered NKX2.5 reporter cell line differentiated into cardiomyocytes with the same efficiency as the original wild-type line. We then exposed the cells to valproic acid (25–300 μM) and thalidomide (0.1–36 µM) and compared the PluriBeat readout of the cardiomyocytes with the luminescence intensity of the PluriLum assay. The results showed that thalidomide decreased luminescence intensity significantly with a higher potency and efficacy compared to the beating readout. With this, we have developed a novel hiPSC-based assay with a standardized readout that may have the potential for higher throughput screening for developmental toxicity.

Funder

Miljøstyrelsen

Uddannelses- og Forskningsministeriet

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3