Numerical and physical modeling of breast cancer based on image fusion and artificial intelligence

Author:

Dołęga-Kozierowski Bartosz,Kasprzak Piotr,Lis Michał,Szynglarewicz Bartłomiej,Matkowski Rafał,Sawicki Marek,Dymek Mateusz,Szumiejko Adrianna,Carmo Gustavo,Kwiatkowski Artur,Soliński Daniel Grzegorz,Ptak MariuszORCID

Abstract

Abstract Purpose The key problem raised in the paper is the change in the position of the breast tumor due to magnetic resonance imaging examinations in the abdominal position relative to the supine position during the surgical procedure. Changing the position of the patient leads to significant deformation of the breast, which leads to the inability to indicate the location of the neoplastic lesion correctly. Methods This study outlines a methodological process for treating cancer patients. Pre-qualification assessments are conducted for magnetic resonance imaging (MRI), and 3D scans are taken in three positions: supine with arms raised, supine surgical position (SS), and standing. MRI and standard ultrasonography (USG) imaging are performed, and breast and cancer tissue are segmented from the MRI images. Finite element analysis is used to simulate tissue behavior in different positions, and an artificial neural network is trained to predict tumor dislocation. Based on the model, a 3D-printed breast with a highlighted tumor is manufactured. This computer-aided analysis is used to create a detailed surgical plan, and lumpectomy surgery is performed in the SS. In addition, the geometry of the tumor is presented to the medical staff as a 3D-printed element. Results By utilizing a comprehensive range of techniques, including pre-qualification assessment, 3D scanning, MRI and USG imaging, segmentation of breast and cancer tissue, model analysis, image fusion, finite element analysis, artificial neural network training, and additive manufacturing, a detailed surgical plan can be created for performing lumpectomy surgery in the supine surgical position. Conclusion The new approach developed for the pre-operative assessment and surgical planning of breast cancer patients has demonstrated significant potential for improving the accuracy and efficacy of surgical procedures. This procedure may also help the pathomorphological justification. Moreover, transparent 3D-printed breast models can benefit breast cancer operation assistance. The physical and computational models can help surgeons visualize the breast and the tumor more accurately and detailedly, allowing them to plan the surgery with greater precision and accuracy.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3