Biodegradable iron-based foams prepared by the space holder technique using urea

Author:

Čákyová V.,Gorejová R.ORCID,Macko R.,Petruš O.,Sopčák T.,Kupková M.,Kaľavský F.,Oriňaková R.ORCID

Abstract

AbstractIron-based degradable biomaterials have attracted much attention as next-generation bone implants due to their excellent mechanical properties and good biocompatibility. Many studies are now focusing on the preparation and detailed study of porous versus non-porous degradable materials. Porous degradable biomaterials have many advantages over the non-porous ones owing to their structure, which allows easier bone tissue ingrowth. The aim of this work was to prepare Fe-based biodegradable porous materials in a cost-effective way via powder metallurgy technique using urea space holders. Five different samples with increasing space holder weight ratio (up to 20 wt%) were prepared. Surface morphology and sample structure were studied using the optical microscopy, Raman spectroscopy, and scanning electron microscopy (SEM) with energy-dispersive X-ray analysis (EDX). Electrochemical corrosion rate analysis confirmed that the samples corroded faster with increasing number of pores. With an increasing amount of urea, the number of pores increased proportionally, which can potentially be used to tune the corrosion rate. However, mechanical integrity of the samples was not maintained when more than 10 wt% of space holder was used. Graphical abstract

Funder

Agentúra na Podporu Výskumu a Vývoja

International Visegrad Fund

Operational Program for Research, Development and Education, co-funded by the European Union

Ministry of Education, Youth and Sports of the Czech Republic

Pavol Jozef Šafárik University in Košice

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Electrochemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3