Skip to main content
Log in

Neurogenic Cell Behavior in 3D Culture Enhanced Within a Highly Compliant Synthetic Hydrogel Platform Formed via Competitive Crosslinking

  • Original Article
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Purpose

Scaffold materials that better support neurogenesis are still needed to improve cell therapy outcomes for neural tissue damage. We have used a modularly tunable, highly compliant, degradable hydrogel to explore the impacts of hydrogel compliance stiffness on neural differentiation. Here we implemented competitive matrix crosslinking mechanics to finely tune synthetic hydrogel moduli within soft tissue stiffnesses, a range much softer than typically achievable in synthetic crosslinked hydrogels, providing a modularly controlled and ultrasoft 3D culture model which supports and enhances neurogenic cell behavior.

Methods

Soluble competitive allyl monomers were mixed with proteolytically-degradable poly(ethylene glycol) diacrylate derivatives and crosslinked to form a matrix, and resultant hydrogel stiffness and diffusive properties were evaluated. Neural PC12 cells or primary rat fetal neural stem cells (NSCs) were encapsulated within the hydrogels, and cell morphology and phenotype were investigated to understand cell-matrix interactions and the effects of environmental stiffness on neural cell behavior within this model.

Results

Addition of allyl monomers caused a concentration-dependent decrease in hydrogel compressive modulus from 4.40 kPa to 0.26 kPa (natural neural tissue stiffness) without influencing soluble protein diffusion kinetics through the gel matrix. PC12 cells encapsulated in the softest hydrogels showed significantly enhanced neurite extension in comparison to PC12s in all other hydrogel stiffnesses tested. Encapsulated neural stem cells demonstrated significantly greater spreading and elongation in 0.26 kPa alloc hydrogels than in 4.4 kPa hydrogels. When soluble growth factor deprivation (for promotion of neural differentiation) was evaluated within the neural stiffness gels (0.26 kPa), NSCs showed increased neuronal marker expression, indicating early enhancement of neurogenic differentiation.

Conclusions

Implementing allyl-acrylate crosslinking competition reduced synthetic hydrogel stiffness to provide a supportive environment for 3D neural tissue culture, resulting in enhanced neurogenic behavior of encapsulated cells. These results indicate the potential suitability of this ultrasoft hydrogel system as a model platform for further investigating environmental factors on neural cell behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support this published work are available upon request from the corresponding author, RC.

References

  1. Demetri, G. D., et al. Soft tissue sarcoma. J. Natl. Compr. Cancer Netw. 8(6):630–674, 2010.

    Article  Google Scholar 

  2. Gilbert, N. F., et al. Soft-tissue sarcoma. J. Am. Acad. Orthop. Surg. 17(1):40–47, 2009.

    Article  PubMed  Google Scholar 

  3. Khellaf, A., D. Z. Khan, and A. Helmy. Recent advances in traumatic brain injury. J. Neurol. 266(11):2878–2889, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Boese, A. C., M. H. Hamblin, and J. P. Lee. Neural stem cell therapy for neurovascular injury in Alzheimer’s disease. Exp. Neurol. 324:113112, 2020.

    Article  CAS  PubMed  Google Scholar 

  5. Alexander, B. M., and T. F. Cloughesy. Adult glioblastoma. J. Clin. Oncol. 35(21):2402–2409, 2017.

    Article  CAS  PubMed  Google Scholar 

  6. Prevention, C.f.D.C.a. Stroke Facts. 2017.

  7. Stroke, N.N.I.o.N.D.a. Stroke Information Page. 2016.

  8. Armour, B. S., et al. Prevalence and causes of paralysis-United States, 2013. Am. J. Public Health. 106(10):1855–1857, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hunt, C., et al. Prevalence of chronic pain after spinal cord injury: a systematic review and meta-analysis. Reg. Anesth. Pain Med. 46(4):328–336, 2021.

    Article  PubMed  Google Scholar 

  10. Burke, D., O. Lennon, and B. M. Fullen. Quality of life after spinal cord injury: the impact of pain. Eur. J. Pain. 22(9):1662–1672, 2018.

    Article  CAS  PubMed  Google Scholar 

  11. Burke, D., et al. Neuropathic pain prevalence following spinal cord injury: A systematic review and meta-analysis. Eur J Pain. 21(1):29–44, 2017.

    Article  CAS  PubMed  Google Scholar 

  12. Chau, M., et al. Transplantation of iPS cell-derived neural progenitors overexpressing SDF-1alpha increases regeneration and functional recovery after ischemic stroke. Oncotarget. 8(57):97537–97553, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ahuja, C. S., et al. Traumatic spinal cord injury-repair and regeneration. Neurosurgery. 80(3S):S9–S22, 2017.

    Article  PubMed  Google Scholar 

  14. Baker, E. W., et al. Induced pluripotent stem cell-derived neural stem cell therapy enhances recovery in an ischemic stroke pig model. Sci. Rep. 7(1):10075, 2017.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  15. Ryu, S., et al. Human neural stem cells promote proliferation of endogenous neural stem cells and enhance angiogenesis in ischemic rat brain. Neural Regen. Res. 11(2):298–304, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mine, Y., et al. Grafted human neural stem cells enhance several steps of endogenous neurogenesis and improve behavioral recovery after middle cerebral artery occlusion in rats. Neurobiol. Dis. 52:191–203, 2013.

    Article  CAS  PubMed  Google Scholar 

  17. Stroemer, P., et al. The neural stem cell line CTX0E03 promotes behavioral recovery and endogenous neurogenesis after experimental stroke in a dose-dependent fashion. Neurorehabil. Neural Repair. 23(9):895–909, 2009.

    Article  PubMed  Google Scholar 

  18. Lam, J., et al. Delivery of iPS-NPCs to the stroke cavity within a hyaluronic acid matrix promotes the differentiation of transplanted cells. Adv. Funct. Mater. 24(44):7053–7062, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kelly, S., et al. Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc. Natl. Acad. Sci. U.S.A. 101(32):11839–11844, 2004.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jeong, S. W., et al. Human neural stem cell transplantation promotes functional recovery in rats with experimental intracerebral hemorrhage. Stroke. 34(9):2258–2263, 2003.

    Article  PubMed  Google Scholar 

  21. McBride, J. L., et al. Human neural stem cell transplants improve motor function in a rat model of Huntington’s disease. J. Comput. Neurol. 475(2):211–219, 2004.

    Article  Google Scholar 

  22. Lee, I. S., et al. Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Mol. Neurodegener. 10:38, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cui, G. H., et al. Designer self-assemble peptides maximize the therapeutic benefits of neural stem cell transplantation for Alzheimer’s disease via enhancing neuron differentiation and paracrine action. Mol. Neurobiol. 53(2):1108–1123, 2016.

    Article  CAS  PubMed  Google Scholar 

  24. Park, K. I., Y. D. Teng, and E. Y. Snyder. The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat. Biotechnol. 20(11):1111–1117, 2002.

    Article  CAS  PubMed  Google Scholar 

  25. Zhong, J., et al. Hydrogel matrix to support stem cell survival after brain transplantation in stroke. Neurorehabil. Neural Repair. 24(7):636–644, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Maclean, F. L., et al. Integrating biomaterials and stem cells for neural regeneration. Stem Cells Dev. 25(3):214–226, 2016.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  27. Lindvall, O., and Z. Kokaia. Recovery and rehabilitation in stroke: stem cells. Stroke. 35(11 Suppl 1):2691–2694, 2004.

    Article  PubMed  Google Scholar 

  28. Teixeira, A. I., J. K. Duckworth, and O. Hermanson. Getting the right stuff: controlling neural stem cell state and fate in vivo and in vitro with biomaterials. Cell Res. 17(1):56–61, 2007.

    Article  CAS  PubMed  Google Scholar 

  29. Vieira, M. S., et al. Neural stem cell differentiation into mature neurons: mechanisms of regulation and biotechnological applications. Biotechnol. Adv. 36(7):1946–1970, 2018.

    Article  CAS  PubMed  Google Scholar 

  30. Doetsch, F. A niche for adult neural stem cells. Curr. Opin. Genet. Dev. 13(5):543–550, 2003.

    Article  CAS  PubMed  Google Scholar 

  31. Conover, J. C., and R. Q. Notti. The neural stem cell niche. Cell Tissue Res. 331(1):211–224, 2008.

    Article  PubMed  Google Scholar 

  32. Andreotti, J. P., et al. Neural stem cell niche heterogeneity. Semin. Cell Dev. Biol. 95:42–53, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Keung, A. J., et al. Rho GTPases mediate the mechanosensitive lineage commitment of neural stem cells. Stem Cells. 29(11):1886–1897, 2011.

    Article  CAS  PubMed  Google Scholar 

  34. Kang, P. H., D. V. Schaffer, and S. Kumar. Angiomotin links ROCK and YAP signaling in mechanosensitive differentiation of neural stem cells. Mol. Biol. Cell. 31(5):386–396, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rammensee, S., et al. Dynamics of mechanosensitive neural stem cell differentiation. Stem Cells. 35(2):497–506, 2017.

    Article  CAS  PubMed  Google Scholar 

  36. Baek, J., et al. Egr1 is a 3D matrix-specific mediator of mechanosensitive stem cell lineage commitment. Sci Adv. 8(15):eabm4646, 2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Koser, D. E., et al. Mechanosensing is critical for axon growth in the developing brain. Nat. Neurosci. 19(12):1592–1598, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Song, Y., et al. The mechanosensitive ion channel piezo inhibits axon regeneration. Neuron. 102(2):373–389, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gunn, J., S. Turner, and B. Mann. Adhesive and mechanical properties of hydrogels influence neurite extension. J. Biomed. Mater. Res. Part A. 72A(1):9, 2005.

    Article  Google Scholar 

  40. Flanagan, L. A., et al. Neurite branching on deformable substrates. Neuroreport. 13(18):2411–2415, 2002.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Balgude, A. P., et al. Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials. 22(10):1077–1084, 2001.

    Article  CAS  PubMed  Google Scholar 

  42. Saha, K., et al. Substrate modulus directs neural stem cell behavior. Biophys. J. 95(9):4426–4438, 2008.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Leipzig, N. D., and M. S. Shoichet. The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials. 30(36):6867–6878, 2009.

    Article  CAS  PubMed  Google Scholar 

  44. Banerjee, A., et al. The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials. 30(27):4695–4699, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sun, Y., et al. Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem cells. Nat. Mater. 13(6):599–604, 2014.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Musah, S., et al. Substratum-induced differentiation of human pluripotent stem cells reveals the coactivator YAP is a potent regulator of neuronal specification. Proc. Natl. Acad. Sci. U.S.A. 111(38):13805–13810, 2014.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Engler, A. J., et al. Matrix elasticity directs stem cell lineage specification. Cell. 126(4):677–689, 2006.

    Article  CAS  PubMed  Google Scholar 

  48. Lam, J., et al. Hydrogel design of experiments methodology to optimize hydrogel for iPSC-NPC culture. Adv. Healthc. Mater. 4(4):534–539, 2015.

    Article  CAS  PubMed  Google Scholar 

  49. Gefen, A., and S. S. Margulies. Are in vivo and in situ brain tissues mechanically similar? J. Biomech. 37(9):1339–1352, 2004.

    Article  PubMed  Google Scholar 

  50. Taylor, Z., and K. Miller. Reassessment of brain elasticity for analysis of biomechanisms of hydrocephalus. J. Biomech. 37(8):1263–1269, 2004.

    Article  PubMed  Google Scholar 

  51. Comley, K., and N. A. Fleck. A micromechanical model for the Young’s modulus of adipose tissue. Int. J. Solids Struct. 47(21):2982–2990, 2010.

    Article  Google Scholar 

  52. Young, D. A., et al. Stimulation of adipogenesis of adult adipose-derived stem cells using substrates that mimic the stiffness of adipose tissue. Biomaterials. 34(34):8581–8588, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Theocharis, A. D., et al. Extracellular matrix structure. Adv. Drug Deliv. Rev. 97:4–27, 2016.

    Article  CAS  PubMed  Google Scholar 

  54. Caliari, S. R., and J. A. Burdick. A practical guide to hydrogels for cell culture. Nat. Methods. 13(5):405–414, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. DeForest, C. A., and K. S. Anseth. Advances in bioactive hydrogels to probe and direct cell fate. Annu. Rev. Chem. Biomol. Eng. 3:421–444, 2012.

    Article  CAS  PubMed  Google Scholar 

  56. Li, X. Engineering neural stem cell fates with hydrogel design for central nervous system regeneration. Prog. Polym. Sci. 37(8):1105–1129, 2012.

    Article  CAS  Google Scholar 

  57. Wang, T. W., and M. Spector. Development of hyaluronic acid-based scaffolds for brain tissue engineering. Acta Biomater. 5(7):2371–2384, 2009.

    Article  CAS  PubMed  Google Scholar 

  58. Ma, W., et al. CNS stem and progenitor cell differentiation into functional neuronal circuits in three-dimensional collagen gels. Exp. Neurol. 190(2):276–288, 2004.

    Article  CAS  PubMed  Google Scholar 

  59. Addington, C. P., et al. Enhancing neural stem cell response to SDF-1alpha gradients through hyaluronic acid-laminin hydrogels. Biomaterials. 72:11–19, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Arulmoli, J., et al. Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering. Acta Biomater. 43:122–138, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Barros, D., I. F. Amaral, and A. P. Pego. Laminin-inspired cell-instructive microenvironments for neural stem cells. Biomacromolecules. 21(2):276–293, 2020.

    Article  CAS  PubMed  Google Scholar 

  62. Seidlits, S. K., et al. The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation. Biomaterials. 31(14):3930–3940, 2010.

    Article  CAS  PubMed  Google Scholar 

  63. O’Connor, S. M., et al. Primary neural precursor cell expansion, differentiation and cytosolic Ca(2+) response in three-dimensional collagen gel. J. Neurosci. Methods. 102(2):187–195, 2000.

    Article  PubMed  Google Scholar 

  64. Nisbet, D.R., et al., Neural Tissue Engineering of the CNS Using Hydrogels - A review (vol 5, pg 293, 2003). Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2009. 88b(1): p. 304-304.

  65. Ju, Y. E., et al. Enhanced neurite growth from mammalian neurons in three-dimensional salmon fibrin gels. Biomaterials. 28(12):2097–2108, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mahoney, M. J., et al. Impact of cell type and density on nerve growth factor distribution and bioactivity in 3-dimensional collagen gel cultures. Tissue Eng. 12(7):1915–1927, 2006.

    Article  CAS  PubMed  Google Scholar 

  67. Schweller, R. M., and J. L. West. Encoding hydrogel mechanics via network cross-linking structure. ACS Biomater. Sci. Eng. 1(5):335–344, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Unal, A. Z., and J. L. West. Synthetic ECM: bioactive synthetic hydrogels for 3D tissue engineering. Bioconjug. Chem. 31(10):2253–2271, 2020.

    Article  CAS  PubMed  Google Scholar 

  69. Zhu, J., and R. E. Marchant. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev. Med. Devices. 8(5):607–626, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Moore, E. M., G. Ying, and J. L. West. Macrophages influence vessel formation in 3D bioactive hydrogels. Adv. Biosyst. 1(3):16000021, 2017.

    Article  Google Scholar 

  71. Roudsari, L. C., et al. A 3D poly(ethylene glycol)-based tumor angiogenesis model to study the influence of vascular cells on lung tumor cell behavior. Sci. Rep. 6:32726, 2016.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ali, S., et al. Immobilization of cell-adhesive laminin peptides in degradable PEGDA hydrogels influences endothelial cell tubulogenesis. Biores. Open Access. 2(4):241–249, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Potter, W., R. E. Kalil, and W. J. Kao. Biomimetic material systems for neural progenitor cell-based therapy. Front. Biosci. 13:806–821, 2008.

    Article  CAS  PubMed  Google Scholar 

  74. Mahoney, M. J., and K. S. Anseth. Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels. Biomaterials. 27(10):2265–2274, 2006.

    Article  CAS  PubMed  Google Scholar 

  75. Lu, X., et al. Polyethylene glycol in spinal cord injury repair: a critical review. J. Exp. Pharmacol. 10:37–49, 2018.

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mosley, M. C., et al. Neurite extension and neuronal differentiation of human induced pluripotent stem cell derived neural stem cells on polyethylene glycol hydrogels containing a continuous Young’s Modulus gradient. J. Biomed. Mater. Res. A. 105(3):824–833, 2017.

    Article  CAS  PubMed  Google Scholar 

  77. Li, X., et al. Short laminin peptide for improved neural stem cell growth. Stem Cells Transl. Med. 3(5):662–670, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hynes, S. R., et al. A library of tunable poly(ethylene glycol)/poly(L-lysine) hydrogels to investigate the material cues that influence neural stem cell differentiation. J. Biomed. Mater. Res. A. 89(2):499–509, 2009.

    Article  PubMed  Google Scholar 

  79. Naghdi, P., et al. Survival, proliferation and differentiation enhancement of neural stem cells cultured in three-dimensional polyethylene glycol-RGD hydrogel with tenascin. J. Tissue Eng. Regen. Med. 10(3):199–208, 2016.

    Article  CAS  PubMed  Google Scholar 

  80. Barros, D., et al. Engineering hydrogels with affinity-bound laminin as 3D neural stem cell culture systems. Biomater. Sci. 7(12):5338–5349, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Katz, R. R., and J. L. West. Tunable PEG hydrogels for discerning differential tumor cell response to biomechanical cues. Adv. Biol. (Weinh). 6(12):e2200084, 2022.

    Article  PubMed  Google Scholar 

  82. Wiley, K. L., et al. Rational design of hydrogel networks with dynamic mechanical properties to mimic matrix remodeling. Adv. Healthc. Mater. 11(7):e2101947, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zustiak, S. P., and J. B. Leach. Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties. Biomacromolecules. 11(5):1348–1357, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chapla, R., M. Alhaj Abed, and J. West. Modulating functionalized poly(ethylene glycol) diacrylate hydrogel mechanical properties through competitive crosslinking mechanics for soft tissue applications. Polymers (Basel). 12(12):3000, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Baker, B. M., and C. S. Chen. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125(Pt 13):3015–3024, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Magin, C. M., D. L. Alge, and K. S. Anseth. Bio-inspired 3D microenvironments: a new dimension in tissue engineering. Biomed Mater. 11(2):022001, 2016.

    Article  ADS  PubMed  Google Scholar 

  87. Huebsch, N., et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9(6):518–526, 2010.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tam, R. Y., L. J. Smith, and M. S. Shoichet. engineering cellular microenvironments with photo- and enzymatically responsive hydrogels: toward biomimetic 3D cell culture models. Acc. Chem. Res. 50(4):703–713, 2017.

    Article  CAS  PubMed  Google Scholar 

  89. Blatchley, M. R., and S. Gerecht. Acellular implantable and injectable hydrogels for vascular regeneration. Biomed. Mater. 10(3):034001, 2015.

    Article  ADS  PubMed  Google Scholar 

  90. Reinhard, S. M., K. Razak, and I. M. Ethell. A delicate balance: role of MMP-9 in brain development and pathophysiology of neurodevelopmental disorders. Front. Cell Neurosci. 9:280, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Matsumoto, A., et al. Reassessment of free-radical polymerization mechanism of allyl acetate based on end-group determination of resulting oligomers by MALDI-TOF-MS spectrometry. Polym. J. 41(1):26–33, 2009.

    Article  CAS  Google Scholar 

  92. Deb, P. C. Non-ideal polymerization - treatment of non-ideality due to primary radical termination and degradative chain transfer. Eur. Polym. J. 11(1):31–36, 1975.

    Article  CAS  Google Scholar 

  93. Zubov, V. P., et al. Reactivity of allyl monomers in radical polymerization. J. Macromol. Sci. A13(1):111–131, 1979.

    Article  CAS  Google Scholar 

  94. Longair, M. H., D. A. Baker, and J. D. Armstrong. Simple Neurite Tracer: open source software for reconstruction, visualization and analysis of neuronal processes. Bioinformatics. 27(17):2453–2454, 2011.

    Article  CAS  PubMed  Google Scholar 

  95. Fan, L., et al. Directing induced pluripotent stem cell derived neural stem cell fate with a three-dimensional biomimetic hydrogel for spinal cord injury repair. ACS Appl. Mater. Interfaces. 10(21):17742–17755, 2018.

    Article  CAS  PubMed  Google Scholar 

  96. Huang, F., Q. Shen, and J. Zhao. Growth and differentiation of neural stem cells in a three-dimensional collagen gel scaffold. Neural Regen. Res. 8(4):313–319, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Sun, W., et al. Viability and neuronal differentiation of neural stem cells encapsulated in silk fibroin hydrogel functionalized with an IKVAV peptide. J. Tissue Eng. Regen. Med. 11(5):1532–1541, 2017.

    Article  CAS  PubMed  Google Scholar 

  98. Seidlits, S. K., et al. Peptide-modified, hyaluronic acid-based hydrogels as a 3D culture platform for neural stem/progenitor cell engineering. J. Biomed. Mater. Res. A. 107(4):704–718, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Madl, C. M., et al. Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling. Nat. Mater. 16(12):1233–1242, 2017.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hsieh, F. Y., H. H. Lin, and S. H. Hsu. 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials. 71:48–57, 2015.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Science Foundation Graduate Research Fellowship Program (NSF GRFP DGE 1644868) and the Duke University Department of Biomedical Engineering for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Chapla.

Ethics declarations

Conflict of interest

The authors state no conflicts of interest or competing interests for this work.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3572 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chapla, R., Katz, R.R. & West, J.L. Neurogenic Cell Behavior in 3D Culture Enhanced Within a Highly Compliant Synthetic Hydrogel Platform Formed via Competitive Crosslinking. Cel. Mol. Bioeng. 17, 35–48 (2024). https://doi.org/10.1007/s12195-024-00794-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-024-00794-2

Keywords

Navigation