Skip to main content

Advertisement

Log in

Inhibitory effects of bioactive compounds on UVB-induced photodamage in human keratinocytes: modulation of MMP1 and Wnt signaling pathways

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

UVB radiation significantly threatens skin health, contributing to wrinkle formation and an elevated risk of skin cancer. This study aimed to explore bioactive compounds with potential UVB-protective properties. Using in silico analysis, we chose compounds to reduce binding energy with matrix metalloproteinase-1 (MMP1). Piperitoside, procyanidin C1, and mulberrofuran E emerged as promising candidates through this computational screening process. We investigated the UVB-protective efficacy of the selected compounds and underlying mechanisms in human immortalized keratinocytes (HaCaT). We also investigated the molecular pathways implicated in their action, focusing on the transforming growth factor (TGF)-β and wingless-related integration site (Wnt)/β-catenin signaling pathways. In UVB-exposed HaCaT cells (100 mJ/cm2 for 30 min), piperitoside, procyanidin C1, and mulberrofuran E significantly reduced reactive oxygen species (ROS) and lipid peroxides, coupled with an augmentation of collagen expression. These compounds suppressed MMP1, tumor necrosis factor-alpha (TNF-α), and inducible nitric oxide synthase (iNOS) expression, while they concurrently enhanced collagen-1 (COL1A1), β-catenin (CTNNB1), and superoxide dismutase type-1 (SOD1) expression. Furthermore, Wnt/β-catenin inhibitors, when administered subsequently, partially counteracted the reduction in MMP1 expression and alleviated inflammatory and oxidative stress markers induced by the bioactive compounds. In conclusion, piperitoside, procyanidin C1, and mulberrofuran E protected against UVB-induced damage in HaCaT cells by inhibiting MMP1 expression and elevating β-catenin expression. Consequently, these bioactive compounds emerge as promising preventive agents for UVB-induced skin damage, promoting skin health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data presented in this study are available upon request from the corresponding author.

References

  1. Ansary, T. M., Hossain, M. R., Kamiya, K., Komine, M., & Ohtsuki, M. (2021). Inflammatory molecules associated with ultraviolet radiation-mediated skin aging. International Journal of Molecular Sciences, 22, 3974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Klak, M., Gomółka, M., Dobrzański, T., Tymicki, G., Cywoniuk, P., Kowalska, P., Kosowska, K., Bryniarski, T., Berman, A., Dobrzyń, A., Idaszek, J., Święszkowski, W., & Wszoła, M. (2020). Irradiation with 365 nm and 405 nm wavelength shows differences in DNA damage of swine pancreatic islets. PLoS ONE, 15, e0235052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kang, Y.-M., Hong, C.-H., Kang, S.-H., Seo, D.-S., Kim, S.-O., Lee, H.-Y., Sim, H.-J., & An, H.-J. (2020). Anti-photoaging effect of plant extract fermented with Lactobacillus buchneri on CCD-986sk fibroblasts and HaCaT keratinocytes. J Funct Biomater, 11, 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kumar, A., Archo, S., Singh, C. P., Naikoo, S. H., Singh, B., Kaur, S., & Tasduq, S. A. (2022). Photoprotective effect of 18β-glycyrrhetinic acid derivatives against ultraviolet (UV)-B-Induced skin aging. Bioorganic and Medicinal Chemistry Letters, 76, 128984.

    Article  CAS  PubMed  Google Scholar 

  5. Piipponen, M., Li, D., & Landén, N. X. (2020). The immune functions of keratinocytes in skin wound healing. International Journal of Molecular Sciences, 21, 8790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, Y., Li, W., Xu, S., Hu, R., Zeng, Q., Liu, Q., Li, S., Lee, H., Chang, M., & Guan, L. (2019). Protective skin aging effects of cherry blossom extract (Prunus Yedoensis) on oxidative stress and apoptosis in UVB-irradiated HaCaT cells. Cytotechnology, 71, 475–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zuo, L., Prather, E. R., Stetskiv, M., Garrison, D. E., Meade, J. R., Peace, T. I., & Zhou, T. (2019). Inflammaging and oxidative stress in human diseases: from molecular mechanisms to novel treatments. International Journal of Molecular Sciences, 20, 4472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee, H., Kim, S. Y., Lee, S. W., Kwak, S., Li, H., Piao, R., Park, H. Y., Choi, S., & Jeong, T. S. (2022). Amentoflavone-enriched selaginella rossii protects against ultraviolet- and oxidative stress-induced aging in skin cells. Life, 12, 2106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oliveira, M. M., Ratti, B. A., Daré, R. G., Silva, S. O., Truiti, Md. C. T., Ueda-Nakamura, T., Auzély-Velty, R., & Nakamura, C. V. (2019). Dihydrocaffeic acid prevents UVB-induced oxidative stress leading to the inhibition of apoptosis and MMP-1 expression via p38 signaling pathway. Oxidative Medicine and Cellular Longevity, 2019, 2419096.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lin, P., Hwang, E., Ngo, H. T., Seo, S. A., & Yi, T.-H. (2019). Sambucus nigra L. ameliorates UVB-induced photoaging and inflammatory response in human skin keratinocytes. Cytotechnology, 71, 1003–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, M., Hwang, E., Lin, P., Gao, W., Ngo, H. T., & Yi, T.-H. (2018). Prunella vulgaris L. exerts a protective effect against extrinsic aging through NF-κB, MAPKs, AP-1, and TGF-β/Smad signaling pathways in UVB-aged normal human dermal fibroblasts. Rejuvenation Research, 21, 313–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Geng, R., Kang, S. G., Huang, K., & Tong, T. (2021). Boosting the photoaged skin: the potential role of dietary components. Nutrients, 13, 1691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tian, L., Ke, D., Hong, Y., Zhang, C., Tian, D., Chen, L., Zhan, L., & Zong, S. (2021). Artesunate treatment ameliorates ultraviolet irradiation-driven skin photoaging via increasing β-catenin expression. Aging, 13, 25325–25341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Park, S., Liu, M., & Huang, S. (2023). Association of polygenic variants involved in immunity and inflammation with duodenal ulcer risk and their interaction with irregular eating habits. Nutrients, 15, 296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, M., Charareh, P., Lei, X., & Zhong, J. L. (2019). Autophagy: multiple mechanisms to protect skin from ultraviolet radiation-driven photoaging. Oxidative Medicine and Cellular Longevity, 2019, 1–14.

    CAS  Google Scholar 

  16. Mena, S., Ortega, A., & Estrela, J. M. (2009). Oxidative stress in environmental-induced carcinogenesis. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 674, 36–44.

    Article  CAS  Google Scholar 

  17. Kim, K. Y. (2018). Anti-inflammatory and ECM gene expression modulations of β-eudesmol via NF-κB signaling pathway in normal human dermal fibroblasts. Biomed Dermatol, 2, 1–12.

    Article  Google Scholar 

  18. Jang, Y. A., & Kim, B. A. (2021). Protective effect of spirulina-derived C-phycocyanin against ultraviolet B-induced damage in HaCaT cells. Medicina, 57, 273.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ishchuk, T., Glavachek, D., Savchuk, O., Yakovlev, P., Falaleeva, T., Beregova, T., & Ostapchenko, L. (2018). Plasma levels of MMPs and TIMP-1 in urinary bladder cancer patients. Biomed Res Ther, 5, 1931–1940.

    Article  Google Scholar 

  20. Shin, S., Cho, S. H., Park, D., & Jung, E. (2020). Anti-skin aging properties of protocatechuic acid in vitro and in vivo. Journal of Cosmetic Dermatology, 19, 977–984.

    Article  PubMed  Google Scholar 

  21. Xiao, Z., Liang, P., Chen, J., Chen, M. F., Gong, F., Li, C., Zhou, C., Hong, P., Yang, P., & Qian, Z. J. (2019). A peptide YGDEY from tilapia gelatin hydrolysates inhibits UVB-mediated skin photoaging by regulating MMP-1 and MMP-9 expression in HaCaT cells. Photochemistry and Photobiology, 95, 1424–1432.

    Article  CAS  PubMed  Google Scholar 

  22. Zheng, Z., Xiao, Z., He, Y.-L., Tang, Y., Li, L., Zhou, C., Hong, P., Luo, H., & Qian, Z.-J. (2021). Heptapeptide isolated from Isochrysis zhanjiangensis exhibited anti-photoaging potential via MAPK/AP-1/MMP pathway and anti-apoptosis in UVB-irradiated HaCaT cells. Marine Drugs, 19, 626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peng, Z., Gao, J., Su, W., Cao, W., Zhu, G., Qin, X., Zhang, C., & Qi, Y. (2022). Purification and identification of peptides from oyster (Crassostrea hongkongensis) protein enzymatic hydrolysates and their anti-skin photoaging effects on UVB-irradiated HaCaT cells. Marine Drugs, 20, 749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, H. J., Im, A., Kim, S.-M., Kang, H.-S., Lee, J. D., & Chae, S. (2018). The flavonoid hesperidin exerts anti-photoaging effect by downregulating matrix metalloproteinase (MMP)-9 expression via mitogen-activated protein kinase (MAPK)-dependent signaling pathways. BMC Complementary and Alternative Medicine, 18, 1–9.

    Article  CAS  Google Scholar 

  25. Moon, N. R., Kang, S., & Park, S. (2018). Consumption of ellagic acid and dihydromyricetin synergistically protects against UVB-induced photoaging, possibly by activating both TGF-β1 and Wnt signaling pathways. Journal of Photochemistry and Photobiology B: Biology, 178, 92–100.

    Article  CAS  PubMed  Google Scholar 

  26. Evans, J. A., & Johnson, E. J. (2010). The role of phytonutrients in skin health. Nutrients, 2, 903–928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fahlman, B. M., & Krol, E. S. (2009). Inhibition of UVA and UVB radiation-induced lipid oxidation by quercetin. Journal of Agriculture and Food Chemistry, 57, 5301–5305.

    Article  CAS  Google Scholar 

  28. Rich, L., & Whittaker, P. (2005). Collagen and picrosirius red staining: A polarized light assessment of fibrillar hue and spatial distribution. Journal of Morphological Sciences, 22, 97–104.

    Google Scholar 

  29. Fields, G. B. (2013). Interstitial collagen catabolism. Journal of Biological Chemistry, 288, 8785–8793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Finnson, K. W., McLean, S., Di Guglielmo, G. M., & Philip, A. (2013). Dynamics of transforming growth factor beta signaling in wound healing and scarring. Advances in Wound Care, 2, 195–214.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li, Y., Xiong, L., Tang, J., Zhu, G., Dai, R., & Li, L. (2020). Mouse skin-derived precursors alleviates ultraviolet B irradiation damage via early activation of TGF-β/Smad pathway by thrombospondin1. Cell Cycle, 19, 492–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Whyte, J. L., Smith, A. A., & Helms, J. A. (2012). Wnt signaling and injury repair. Cold Spring Harbor Perspectives in Biology, 4, a008078.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Xu, X., Wang, H.-Y., Zhang, Y., Liu, Y., Li, Y.-Q., Tao, K., Wu, C.-T., Jin, J.-D., & Liu, X.-Y. (2014). Adipose-derived stem cells cooperate with fractional carbon dioxide laser in antagonizing photoaging: A potential role of Wnt and β-catenin signaling. Cell and Bioscience, 4, 1–11.

    Article  CAS  Google Scholar 

  34. Wulandari, M. A. M., Wiraguna, A. A. G. P., & Pangkahila, W. (2023). Peppermint leaf extract cream increased transforming growth factor β (TGF-β) expression and collagen amount in the male wistar rat’s skin exposed to UVB. Jurnal Ilmiah Permas, 13, 849–856.

    Google Scholar 

  35. Dasiman, R., Nor, N. M., Eshak, Z., Mutalip, S. S. M., Suwandi, N. R., & Bidin, H. (2022). A review of procyanidin: updates on current bioactivities and potential health benefits. Biointerface Res Appl Chem, 12, 5918–5940.

    CAS  Google Scholar 

  36. Ramesh, H., Sivaram, V., & Murthy, V. Y. (2014). Antioxidant and medicinal properties of mulberry (Morus sp.): A review. World Journal of Pharmaceutical Research, 3, 320–343.

    Google Scholar 

  37. Addor, F. A. S. (2017). Antioxidants in dermatology. Anais Brasileiros de Dermatologia, 92, 356–362.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vara, D., & Pula, G. (2014). Reactive oxygen species: Physiological roles in the regulation of vascular cells. Current Molecular Medicine, 14, 1103–1125.

    Article  CAS  PubMed  Google Scholar 

  39. El Assar, M., Angulo, J., & Rodríguez-Mañas, L. (2013). Oxidative stress and vascular inflammation in aging. Free Radical Biology and Medicine, 65, 380–401.

    Article  PubMed  Google Scholar 

  40. Qin, D., Lee, W.-H., Gao, Z., Zhang, W., Peng, M., Sun, T., & Gao, Y. (2018). Protective effects of antioxidin-RL from Odorrana livida against ultraviolet B-irradiated skin photoaging. Peptides, 101, 124–134.

    Article  CAS  PubMed  Google Scholar 

  41. Ågren, M. S., Schnabel, R., Christensen, L. H., & Mirastschijski, U. (2015). Tumor necrosis factor-α-accelerated degradation of type I collagen in human skin is associated with elevated matrix metalloproteinase (MMP)-1 and MMP-3 ex vivo. European Journal of Cell Biology, 94, 12–21.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Szoltysek, K., Walaszczyk, A., Janus, P., Kimmel, M., & Widlak, P. (2017). Irradiation with UV-C inhibits TNF-α-dependent activation of the NF-κB pathway in a mechanism potentially mediated by reactive oxygen species. Genes to Cells, 22, 45–58.

    Article  CAS  PubMed  Google Scholar 

  43. Zhou, Z., Wang, L., Song, Z., Lambert, J. C., McClain, C. J., & Kang, Y. J. (2003). A critical involvement of oxidative stress in acute alcohol-induced hepatic TNF-α production. American Journal of Pathology, 163, 1137–1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Leung, W. S., Kuo, W. W., Ju, D. T., Wang, T. D., Shao-Tsu Chen, W., Ho, T. J., Lin, Y. M., Mahalakshmi, B., Lin, J. Y., & Huang, C. Y. (2020). Protective effects of diallyl trisulfide (DATS) against doxorubicin-induced inflammation and oxidative stress in the brain of rats. Free Radical Biology and Medicine, 160, 141–148.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Research Foundation in Korea (RS-2023-00208567).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and methodology, SP and ML; formal analysis, SH and ML; writing—original draft preparation, ML; writing—review and editing, SP; funding acquisition, SP; all the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Sunmin Park.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

43630_2023_531_MOESM1_ESM.pdf

Supplementary file1 Table S1. Primer lists of superoxide dismutase-1 (SOD1), iNOS, β-catenin, MMP1, TNF-α, and collagen1 genes. Figure S1. Molecular docking of MMP1 with Physalin O (A) and Mangicrocin (B). Molecular docking of Physalin O or Mangicrocin with MMP1 (1) Cartoon representation of food component (balls and stick model) binding with MMP1, (2) binding of food component at the central cavity of MMP1, and (3) 2D depiction of MMP1 interacting with food component and the nature of forces involved in stabilizing MMP1 – (+)-food component. Figure S2. Reactive oxygen species (ROS), lipid peroxides and mRNA expression of oxidative stress and inflammation-related proteins after pretreatment of SB431542: a selective and potent inhibitor of the TGF-β/Activin/NODAL pathway. A. ROS contents. B. Lipid peroxide contents. C. mRNA expression of Collagen 1. D. mRNA expression of MMP1. E. mRNA expression of TNF-α. F. mRNA expression of SOD1. G. mRNA expression of iNOS. H. mRNA expression of β-catenin (PDF 832 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Huang, S. & Park, S. Inhibitory effects of bioactive compounds on UVB-induced photodamage in human keratinocytes: modulation of MMP1 and Wnt signaling pathways. Photochem Photobiol Sci 23, 463–478 (2024). https://doi.org/10.1007/s43630-023-00531-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00531-0

Keywords

Navigation