On the consistency of two-phase local/nonlocal piezoelectric integral model

Author:

Ren Yanming,Qing Hai

Abstract

AbstractIn this paper, we propose general strain- and stress-driven two-phase local/nonlocal piezoelectric integral models, which can distinguish the difference of nonlocal effects on the elastic and piezoelectric behaviors of nanostructures. The nonlocal piezoelectric model is transformed from integral to an equivalent differential form with four constitutive boundary conditions due to the difficulty in solving intergro-differential equations directly. The nonlocal piezoelectric integral models are used to model the static bending of the Euler-Bernoulli piezoelectric beam on the assumption that the nonlocal elastic and piezoelectric parameters are coincident with each other. The governing differential equations as well as constitutive and standard boundary conditions are deduced. It is found that purely strain- and stress-driven nonlocal piezoelectric integral models are ill-posed, because the total number of differential orders for governing equations is less than that of boundary conditions. Meanwhile, the traditional nonlocal piezoelectric differential model would lead to inconsistent bending response for Euler-Bernoulli piezoelectric beam under different boundary and loading conditions. Several nominal variables are introduced to normalize the governing equations and boundary conditions, and the general differential quadrature method (GDQM) is used to obtain the numerical solutions. The results from current models are validated against results in the literature. It is clearly established that a consistent softening and toughening effects can be obtained for static bending of the Euler-Bernoulli beam based on the general strain- and stress-driven local/nonlocal piezoelectric integral models, respectively.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3