Determining the severity of Parkinson’s disease in patients using a multi task neural network

Author:

García-Ordás María Teresa,Benítez-Andrades José AlbertoORCID,Aveleira-Mata Jose,Alija-Pérez José-Manuel,Benavides Carmen

Abstract

AbstractParkinson’s disease is easy to diagnose when it is advanced, but it is very difficult to diagnose in its early stages. Early diagnosis is essential to be able to treat the symptoms. It impacts on daily activities and reduces the quality of life of both the patients and their families and it is also the second most prevalent neurodegenerative disorder after Alzheimer in people over the age of 60. Most current studies on the prediction of Parkinson’s severity are carried out in advanced stages of the disease. In this work, the study analyzes a set of variables that can be easily extracted from voice analysis, making it a very non-intrusive technique. In this paper, a method based on different deep learning techniques is proposed with two purposes. On the one hand, to find out if a person has severe or non-severe Parkinson’s disease, and on the other hand, to determine by means of regression techniques the degree of evolution of the disease in a given patient. The UPDRS (Unified Parkinson’s Disease Rating Scale) has been used by taking into account both the motor and total labels, and the best results have been obtained using a mixed multi-layer perceptron (MLP) that classifies and regresses at the same time and the most important features of the data obtained are taken as input, using an autoencoder. A success rate of 99.15% has been achieved in the problem of predicting whether a person suffers from severe Parkinson’s disease or non-severe Parkinson’s disease. In the degree of disease involvement prediction problem case, a MSE (Mean Squared Error) of 0.15 has been obtained. Using a full deep learning pipeline for data preprocessing and classification has proven to be very promising in the field Parkinson’s outperforming the state-of-the-art proposals.

Funder

Consejería de Educación, Junta de Castilla y León

Universidad de León

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3