Phytochemicals of Hibiscus sabdariffa with Therapeutic Potential against SARS-CoV-2: A Molecular Docking Study

Author:

AKBABA Emel1ORCID,KARATAŞ Deniz2ORCID

Affiliation:

1. KIRIKKALE UNIVERSITY

2. MANISA CELAL BAYAR UNIVERSITY

Abstract

In this study, the possible interactions of 17 phytochemicals that were reported as the most abundant biomolecules of Hibiscus sabdariffa, including many organic acids as well as catechin and quercetin derivatives, with 3CLpro and PLpro proteases of SARS-CoV-2 have been investigated via molecular docking. Caffeoylshikimic acid/3CLpro showed the lowest binding energy (-7.72 kcal/mol) with seven H-bonds. The second-lowest binding energy was computed in the chlorogenic acid/3CLpro complex (-7.18 kcal/mol), which was found to form 6 H-bonds. Also, low binding energies of cianidanol (-7.10 kcal/mol), cryptochlorogenic acid (-6.67 kcal/mol), and kaempferol (-6.82 kcal/mol) were calculated to 3CLpro with several H-bond interactions. Nelfinavir (-10.16 kcal/mol) and remdesivir (-6.40 kcal/mol), which have been used against COVID-19, were obtained to have low binding energies to 3CLpro with 3 H-bond formations each. On the other hand, the nicotiflorin/PLpro complex, which had the lowest binding energy (-7.40 kcal/mol), was found to have only 1 H-bond interaction. The second-lowest binding energy was reported in chlorogenic acid/PLpro (-7.20 kcal/mol), which was found to possess four H-bonds. On the other hand, epigallocatechin gallate/PLpro, which was shown to have a -5.95 kcal/mol binding energy, was found to form 8 H-bond interactions. Furthermore, the quercetin pentosylhexoside/PLpro complex was monitored to have low binding energy (-6.54 kcal/mol) with 9 H-bonds, which stands as the highest number of H-bonds in all complexes. Therefore, several molecules of Hibiscus sabdariffa were found to have strong binding affinity to the main proteases of SARS-CoV-2. This study suggests many compounds, including caffeoylshikimic acid and nicotiflorin, to inhibit 3CLpro and PLpro activities. As a result, numerous chemicals derived from Hibiscus sabdariffa have the potential to be employed therapeutically against SARS-CoV-2 infection.

Publisher

Igdir University

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3