Targeting the CDA1/CDA1BP1 Axis Retards Renal Fibrosis in Experimental Diabetic Nephropathy

Author:

Chai Zhonglin1ORCID,Wu Tieqiao1,Dai Aozhi1,Huynh Pacific1,Koentgen Frank2,Krippner Guy3,Ren Shuting14,Cooper Mark E.1

Affiliation:

1. Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia

2. Ozgene Pty Ltd., Bentley, Western Australia, Australia

3. Department of Commercialization, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia

4. Department of Pathology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Centre, Xi’an, People’s Republic of China

Abstract

Targeting cell division autoantigen 1 (CDA1) is postulated to attenuate the profibrotic actions of transforming growth factor-β in diabetic nephropathy. This study has identified a regulatory protein for CDA1 and has then used genetic and pharmacological approaches to test in vivo whether strategies to target this pathway would lead to reduced renal injury. A novel protein, named CDA1BP1 (CDA1 binding protein 1), was identified as critical in regulating the profibrotic activity of CDA1. Genetic deletion of CDA1BP1 attenuated key parameters of renal fibrosis in diabetic mice. Furthermore, a series of short synthetic CDA1BP1 peptides competitively inhibited CDA1-CDA1BP1 binding in vitro with a hybrid peptide, CHA-050, containing a 12mer CDA1BP1 peptide and a previously known “cell-penetrating peptide,” dose-dependently reducing expression of collagens I and III in HK-2 cells. In vivo, a d–amino acid retro-inverso peptide, CHA-061, significantly attenuated diabetes-associated increases in the renal expression of genes involved in fibrotic and proinflammatory pathways. In a delayed intervention study, CHA-061 treatment reversed diabetes-associated molecular and pathological changes within the kidney. Specifically, CHA-061 significantly attenuated renal extracellular matrix accumulation and glomerular injury. Taken together, targeting the CDA1/CDA1BP1 axis is a safe, efficacious, and feasible approach to retard experimental diabetic nephropathy.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3