Abnormal Connexin Expression Underlies Delayed Wound Healing in Diabetic Skin

Author:

Wang Chiuhui Mary1,Lincoln Jill1,Cook Jeremy E.1,Becker David L.1

Affiliation:

1. From the Department of Anatomy and Developmental Biology, University College London, London, U.K

Abstract

OBJECTIVE—Dynamically regulated expression of the gap junction protein connexin (Cx)43 plays pivotal roles in wound healing. Cx43 is normally downregulated and Cx26 upregulated in keratinocytes at the edge of the wound as they adopt a migratory phenotype. We have examined the dynamics of Cx expression during wound healing in diabetic rats, which is known to be slow. RESEARCH DESIGN AND METHODS—We induced diabetes with streptozotocin and examined Cx expression and communication in intact and healing skin. RESULTS—We found that diabetes decreased Cx43 and Cx26 protein and communication in the intact epidermis and increased Cx43 protein and communication in the intact dermis. Diabetes also altered the dynamic changes of Cxs associated with wound healing. Within 24 h, Cx43 was upregulated in a thickened bulb of keratinocytes at the wound edge (rather than downregulated as in controls, which formed a thin process of migratory cells). Cx43 decline was delayed until 48 h, when reepithelialization began. Although Cx26 was upregulated as normal after wounding in diabetic skin, its distribution at the wound edge was abnormal, being more widespread. Application of Cx43-specific antisense gel to diabetic wounds prevented the abnormal upregulation of Cx43 and doubled the rate of reepithelialization, which exceeded control levels. CONCLUSIONS—Cx expression in diabetic skin is abnormal, as is the dynamic response of Cx43 to injury, which may underlie the delayed healing of diabetic wounds. Preventing the upregulation of Cx43 in diabetic wounds significantly improves the rate of healing and clearly has potential therapeutic value.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3