Insulin Secretion and Action in Subjects With Impaired Fasting Glucose and Impaired Glucose Tolerance

Author:

Abdul-Ghani Muhammad A.1,Jenkinson Christopher P.1,Richardson Dawn K.1,Tripathy Devjit1,DeFronzo Ralph A.1

Affiliation:

1. From the Diabetes Division, University of Texas Health Science Center, San Antonio, Texas

Abstract

This study was conducted to observe changes in insulin secretion and insulin action in subjects with impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT). A total of 319 subjects were studied with an oral glucose tolerance test (OGTT). Fasting plasma glucose and insulin concentrations were measured at baseline and every 30 min during the OGTT. Fifty-eight subjects also received a euglycemic-hyperinsulinemic clamp. Insulin sensitivity was calculated as the total glucose disposal (TGD) during the last 30 min of the clamp. Homeostasis model assessment of insulin resistance (HOMA-IR) was calculated from fasting plasma glucose and insulin concentrations. Subjects with IFG had TGD similar to normal glucose-tolerant subjects, while subjects with IGT and combined IFG/IGT had significantly reduced TGD. HOMA-IR in subjects with IFG was similar to that in subjects with combined IFG/IGT and significantly higher than HOMA-IR in subjects with IGT or NGT. Insulin secretion, measured by the insulinogenic index (ΔI0–30/ΔG0–30) and by the ratio of the incremental area under the curve (AUC) of insulin to the incremental AUC of glucose (0–120 min), was reduced to the same extent in all three glucose-intolerant groups. When both measurements of β-cell function were adjusted for severity of insulin resistance, subjects with IGT and combined IFG/IGT had a significantly greater reduction in insulin secretion than subjects with IFG. Subjects with IGT and IFG have different metabolic characteristics. Differences in insulin sensitivity and insulin secretion may predict different rates of progression to type 2 diabetes and varying susceptibility to cardiovascular disease.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3