Transgenic approaches to the pathogenesis of NIDDM

Author:

Moller David E1

Affiliation:

1. Division of Endocrinology and Metabolism, Department of Medicine, Harvard Medical School Charles A. Dana Research Institute and Harvard-Thorndike Laboratory, Beth Israel Hospital Boston, Massachusetts

Abstract

The pathogenesis of non-insulin-dependent diabetes mellitus (NIDDM) involves complex interactions between multiple physiological defects, both genetic and acquired. The application of transgenic technology to create animal models that address questions concerning NIDDM (and obesity) is a very recent development that is now gaining rapid momentum and receiving deserved attention. In general, transgenic methods afford new opportunities to alter the site or level of expression of functional genes in vivo, to transfer novel foreign genes into animals, to prevent the expression of specific genes, or to replace genes with specific genetic variants. Two general approaches can be applied: 1) conventional transgenics, the transfer to and expression of new genetic information in animals; and 2) gene targeting, the disruption or replacement of specific endogenous genes. Recent transgenic initiatives have provided important insights into 1) the mechanism of glucose-stimulated insulin secretion and the role of potential defects in this system, 2) the regulated expression of genes that control hepatic glucose production, 3) the role of specific molecules that mediate the actions of insulin, and 4) the elucidation of factors that contribute to in vivo regulation of energy balance and body composition. Emerging transgenic strategies should have a dramatic impact on future efforts to assess the function of newly identified molecules implicated in the regulation of in vivo glucose homeostasis and to determine the roles of candidate loci or specific mutations uncovered during the search for new NIDDM susceptibility genes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Genetically Diabetic Animals;Drug Discovery and Evaluation: Pharmacological Assays;2015

2. Ins1 Cre knock-in mice for beta cell-specific gene recombination;Diabetologia;2014-12-11

3. Antidiabetic Activity;Drug Discovery and Evaluation;2007

4. Chemistry and Biochemistry of Type 2 Diabetes;Chemical Reviews;2004-02-19

5. Impact of Genetic Background and Ablation of Insulin Receptor Substrate (IRS)-3 on IRS-2 Knock-out Mice;Journal of Biological Chemistry;2003-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3