Activation of Protein Kinase C in Glomerular Cells in Diabetes: Mechanisms and Potential Links to the Pathogenesis of Diabetic Glomerulopathy

Author:

Derubertis Frederick R1,Craven Patricia A1

Affiliation:

1. Department of Medicine, Veterans Affairs Medical Center and University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania

Abstract

Protein kinase C (PKC) is activated in rat renal glomerulus within a week of induction of experimental diabetes. Studies in isolated glomeruli and in cultured endothelial and mesangial cells have demonstrated that high ambient concentrations of glucose activate PKC and thus implicate hyperglycemia per se as a mediator of PKC activation in glomerular cells in diabetes. High glucose concentrations activate PKC by increasing cellular levels of diacylglycerol (DAG), the major endogenous modulator of this signalling system. In contrast to physiological extracellular stimuli of PKC that increase cellular DAG levels by receptor-mediated enhancement of membrane inositol phospholipid hydrolysis, in glomerular cells high concentrations of glucose increase DAG by de novo synthesis from glycolytic intermediates. Activation of PKC by glucose or other agonists increases the permeability of endothelial cells to albumin and stimulates matrix protein synthesis in mesangial cells; it thereby may be involved in the pathogenesis of both the functional and structural alterations of the glomerulus in diabetes. Recent studies in isolated glomeruli from diabetic rats have also implicated activation of PKC in suppression of nitric oxide (NO)-mediated increases in glomerular cGMP generation in response to cholinergic stimuli. In mesangial cells, cGMP suppresses PKC-mediated increases in matrix protein synthesis. Thus, impaired NO-mediated cGMP generation in glomeruli of diabetic individuals may amplify matrix protein synthesis in response to hyperglycemia and other stimuli of PKC. These and other observations suggest that activation of the PKC system by hyperglycemia may represent an important pathway by which glucotoxicity is transduced in susceptible cells in diabetes.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 161 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3