Intranasal Insulin Suppresses Endogenous Glucose Production in Humans Compared With Placebo in the Presence of Similar Venous Insulin Concentrations

Author:

Dash Satya1,Xiao Changting1,Morgantini Cecilia1,Koulajian Khajag1,Lewis Gary F.1

Affiliation:

1. Departments of Medicine and Physiology and the Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada, and Division of Endocrinology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada

Abstract

Intranasal insulin (INI) has been shown to modulate food intake and food-related activity in the central nervous system in humans. Because INI increases insulin concentration in the cerebrospinal fluid, these effects have been postulated to be mediated via insulin action in the brain, although peripheral effects of insulin cannot be excluded. INI has been shown to lower plasma glucose in some studies, but whether it regulates endogenous glucose production (EGP) is not known. To assess the role of INI in the regulation of EGP, eight healthy men were studied in a single-blind, crossover study with two randomized visits (one with 40 IU INI and the other with intranasal placebo [INP] administration) 4 weeks apart. EGP was assessed under conditions of an arterial pancreatic clamp, with a primed, constant infusion of deuterated glucose and infusion of 20% dextrose as required to maintain euglycemia. Between 180 and 360 min after administration, INI significantly suppressed EGP by 35.6% compared with INP, despite similar venous insulin concentrations. In conclusion, INI lowers EGP in humans compared with INP, despite similar venous insulin concentrations. INI may therefore be of value in treating excess liver glucose production in diabetes.

Funder

Eli Lilly and Company

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Reference28 articles.

1. Hormonal regulation of hepatic glucose production in health and disease;Lin;Cell Metab,2011

2. Insulin signaling in alpha cells modulates glucagon secretion in vivo;Kawamori;Cell Metab,2009

3. Role of free fatty acids and glucagon in the peripheral effect of insulin on glucose production in humans;Lewis;Am J Physiol,1998

4. Fatty acids mediate the acute extrahepatic effects of insulin on hepatic glucose production in humans;Lewis;Diabetes,1997

5. Hypothalamic insulin signaling is required for inhibition of glucose production;Obici;Nat Med,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3