Postprandial Aminogenic Insulin and Glucagon Secretion Can Stimulate Glucose Flux in Humans

Author:

Ang Teddy1,Bruce Clinton R.1ORCID,Kowalski Greg M.1ORCID

Affiliation:

1. Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia

Abstract

Insulin and glucagon exert opposing actions on glucose metabolism, and their secretion is classically viewed as being inversely regulated. This is, however, context specific as protein ingestion concomitantly stimulates euglycemic insulin and glucagon secretion. It remains enigmatic how euglycemia is preserved under these conditions. Accordingly, we examined the systems-level mechanisms governing such endocrine control of glucose homeostasis. Eight healthy participants completed a water (control) and multidose whey protein ingestion trial designed to augment the protein-induced endocrine response. Glucose kinetics were measured using stable isotope tracer methodology. Protein ingestion induced marked hyperaminoacidemia, hyperinsulinemia (approximately sixfold basal), and unprecedented hyperglucagonemia (approximately eightfold basal) while suppressing free fatty acids. Both glucose disposal (Rd) and endogenous glucose production (EGP) increased by ∼25%, thereby maintaining euglycemia. This demonstrates 1) that protein ingestion can stimulate glucose Rd and EGP, 2) that postprandial inhibition of adipose lipolysis does not suppress EGP, and 3) that physiological hyperglucagonemia can override the hepatic actions of insulin, rendering the liver unresponsive to insulin-mediated EGP suppression. Finally, we argue that glucagon is a bona fide postprandial hormone that evolved to concurrently and synergistically work with insulin to regulate glucose, amino acid, and nitrogen metabolism. These findings may have implications for glucagon receptor antagonist or agonist-based therapies.

Funder

Diabetes Australia Research Program

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3