Bone Marrow Macrophages Contribute to Diabetic Stem Cell Mobilopathy by Producing Oncostatin M

Author:

Albiero Mattia12,Poncina Nicol12,Ciciliot Stefano12,Cappellari Roberta1,Menegazzo Lisa12,Ferraro Francesca34,Bolego Chiara5,Cignarella Andrea1,Avogaro Angelo12,Fadini Gian Paolo12

Affiliation:

1. Department of Medicine, University of Padova, Padova, Italy

2. Venetian Institute of Molecular Medicine, Padova, Italy

3. Pennsylvania Hospital, University of Pennsylvania Health System, Philadelphia, PA

4. Fox Chase Cancer Center, Philadelphia, PA

5. Department of Pharmaceutical Sciences, University of Padova, Italy

Abstract

Diabetes affects bone marrow (BM) structure and impairs mobilization of stem cells (SCs) into peripheral blood (PB). This amplifies multiorgan complications because BMSCs promote vascular repair. Because diabetes skews macrophage phenotypes and BM macrophages (BMMΦ) prevent SC mobilization, we hypothesized that excess BMMΦ contribute to diabetic SC mobilopathy. We show that patients with diabetes have increased M1 macrophages, whereas diabetic mice have increased CD169+ BMMΦ with SC-retaining activity. Depletion of BMMΦ restored SC mobilization in diabetic mice. We found that CD169 labels M1 macrophages and that conditioned medium (CM) from M1 macrophages, but not from M0 and M2 macrophages, induced chemokine (C-X-C motif) ligand 12 (CXCL12) expression by mesenchymal stem/stromal cells. In silico data mining and in vitro validation identified oncostatin M (OSM) as the soluble mediator contained in M1 CM that induces CXCL12 expression via a mitogen-activated protein kinase kinase-p38-signal transducer and activator of a transcription 3–dependent pathway. In diabetic mice, OSM neutralization prevented CXCL12 induction and improved granulocyte-colony stimulating factor and ischemia-induced mobilization, SC homing to ischemic muscles, and vascular recovery. In patients with diabetes, BM plasma OSM levels were higher and correlated with the BM-to-PB SC ratio. In conclusion, BMMΦ prevent SC mobilization by OSM secretion, and OSM antagonism is a strategy to restore BM function in diabetes, which can translate into protection mediated by BMSCs.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3