Molecular Defects in Diabetes Mellitus

Author:

Bell Graeme I1

Affiliation:

1. Howard Hughes Medical Institute and Departments of Biochemistry and Molecular Biology and of Medicine, The University of Chicago Chicago, Illinois

Abstract

The application of molecular biology to problems in diabetes mellitus has begun to reveal the underlying molecular defects contributing to the development of hyperglycemia. Islet amyloid represents the most common pathological lesion occurring in the islets of NIDDM subjects. The use of both biochemistry and molecular biology has lead to the identification of the major protein component of human islet amyloid and elucidation of the structure of its precursor. This protein, termed islet amyloid polypeptide, is related to two neuropeptides, calcitonin gene–related peptides 1 and 2, and represents a new β-cell secretory product whose normal physiological function remains to be determined. The use of molecular biology has also led to a better understanding of the molecular defects contributing to insulin resistance. Characterization of the insulin-receptor gene in patients with extreme forms of insulin resistance has resulted in the identification of mutations that impair its function and lead to tissue resistance to the action of insulin. Molecular biological approaches have also led to a better understanding of the regulation of glucose transport. They have revealed that there is a family of structurally related proteins encoded by distinct genes and expressed in a tissue-specific manner that are responsible for the transport of glucose across the plasma membrane. Moreover, they have shown that specific depletion of the glucose-transporter isoform that mediates insulin-stimulated glucose transport is responsible for decreased transport activity in adipose tissue in insulin-resistant states.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3